Hendris Wongso*, Ryuichi Harada and Shozo Furumoto*,
{"title":"非阿尔茨海默病Tau PET示踪剂的研究进展及未来方向","authors":"Hendris Wongso*, Ryuichi Harada and Shozo Furumoto*, ","doi":"10.1021/acschemneuro.4c0031910.1021/acschemneuro.4c00319","DOIUrl":null,"url":null,"abstract":"<p >Alzheimer’s disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [<sup>18</sup>F]FDDNP, [<sup>11</sup>C]PBB3, [<sup>18</sup>F]flortaucipir, and the [<sup>18</sup>F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD. In 2020, [<sup>18</sup>F]flortaucipir was approved by the U.S. Food and Drug Administration for PET imaging of tau pathology in adult patients with cognitive deficits undergoing evaluation for AD. Despite remarkable progress in the development of AD tau PET tracers, imaging agents for rare non-AD tauopathies (4R tauopathies [predominantly expressing a 4R tau isoform], involved in progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and globular glial tauopathy, and 3R tauopathies [predominantly expressing a 3R tau isoform], such as Pick’s disease) remain substantially underdeveloped. In this review, we discuss recent progress in tau PET tracer development, with particular emphasis on clinically validated tracers for AD and their potential use for non-AD tauopathies. Additionally, we highlight the critical need for further development of tau PET tracers specifically designed for non-AD tauopathies, an area that remains significantly underexplored despite its importance in advancing the understanding and diagnosis of these disorders.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 2","pages":"111–127 111–127"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Progress and Future Directions in Non-Alzheimer’s Disease Tau PET Tracers\",\"authors\":\"Hendris Wongso*, Ryuichi Harada and Shozo Furumoto*, \",\"doi\":\"10.1021/acschemneuro.4c0031910.1021/acschemneuro.4c00319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Alzheimer’s disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [<sup>18</sup>F]FDDNP, [<sup>11</sup>C]PBB3, [<sup>18</sup>F]flortaucipir, and the [<sup>18</sup>F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD. In 2020, [<sup>18</sup>F]flortaucipir was approved by the U.S. Food and Drug Administration for PET imaging of tau pathology in adult patients with cognitive deficits undergoing evaluation for AD. Despite remarkable progress in the development of AD tau PET tracers, imaging agents for rare non-AD tauopathies (4R tauopathies [predominantly expressing a 4R tau isoform], involved in progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and globular glial tauopathy, and 3R tauopathies [predominantly expressing a 3R tau isoform], such as Pick’s disease) remain substantially underdeveloped. In this review, we discuss recent progress in tau PET tracer development, with particular emphasis on clinically validated tracers for AD and their potential use for non-AD tauopathies. Additionally, we highlight the critical need for further development of tau PET tracers specifically designed for non-AD tauopathies, an area that remains significantly underexplored despite its importance in advancing the understanding and diagnosis of these disorders.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"16 2\",\"pages\":\"111–127 111–127\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00319\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Current Progress and Future Directions in Non-Alzheimer’s Disease Tau PET Tracers
Alzheimer’s disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [18F]FDDNP, [11C]PBB3, [18F]flortaucipir, and the [18F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD. In 2020, [18F]flortaucipir was approved by the U.S. Food and Drug Administration for PET imaging of tau pathology in adult patients with cognitive deficits undergoing evaluation for AD. Despite remarkable progress in the development of AD tau PET tracers, imaging agents for rare non-AD tauopathies (4R tauopathies [predominantly expressing a 4R tau isoform], involved in progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and globular glial tauopathy, and 3R tauopathies [predominantly expressing a 3R tau isoform], such as Pick’s disease) remain substantially underdeveloped. In this review, we discuss recent progress in tau PET tracer development, with particular emphasis on clinically validated tracers for AD and their potential use for non-AD tauopathies. Additionally, we highlight the critical need for further development of tau PET tracers specifically designed for non-AD tauopathies, an area that remains significantly underexplored despite its importance in advancing the understanding and diagnosis of these disorders.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research