高压循环下p2型钠离子电池阴极中多离子的协同相互作用

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jingcheng Huang, Lanyan Li*, Zhongyun Ma, Xianyou Wang and Zhigao Luo*, 
{"title":"高压循环下p2型钠离子电池阴极中多离子的协同相互作用","authors":"Jingcheng Huang,&nbsp;Lanyan Li*,&nbsp;Zhongyun Ma,&nbsp;Xianyou Wang and Zhigao Luo*,&nbsp;","doi":"10.1021/acsaem.4c0198210.1021/acsaem.4c01982","DOIUrl":null,"url":null,"abstract":"<p >Layered P2-type Na<sub>0.67</sub>Ni<sub>0.33</sub>Mn<sub>0.67</sub>O<sub>2</sub> (NNMO) is regarded as a viable cathode material because of its open structure, high theoretical capacity, and simplicity in preparation. However, it suffers from intrinsic lattice distortion, complex phase transitions, and severe Na<sup>+</sup>/vacancy ordering severe issues. In this study, the synthesized Na<sub>0.78</sub>Li<sub>0.05</sub>Cu<sub>0.05</sub>Ni<sub>0.25</sub>Mn<sub>0.6</sub>Ti<sub>0.05</sub>O<sub>2</sub> (NLCNMTO) cathode material introduces the substitution of Li, Cu, and Ti for Ni and Mn. Through the synergistic effect of multiple ions, the structural stability is improved and the Na<sup>+</sup>/vacancy ordering and phase transition are suppressed at high voltage. NLCNMTO materials have better ionic conductivity and stronger TM–O covalent bonds, which improves the composites’ ionic diffusion rate and structural stability. It is stabilized in the P2 phase over a voltage range of 2–4.5 V with good cycling stability and multiplicative performance. This study provides a possible multi-ion codoping design for advanced SIBs cathode materials with optimized high-voltage activity as well as excellent structural stability.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 1","pages":"99–107 99–107"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-operative Interaction of Multiple Ions for P2-Type Sodium-Ion Battery Cathodes at High-Voltage Cyclability\",\"authors\":\"Jingcheng Huang,&nbsp;Lanyan Li*,&nbsp;Zhongyun Ma,&nbsp;Xianyou Wang and Zhigao Luo*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0198210.1021/acsaem.4c01982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Layered P2-type Na<sub>0.67</sub>Ni<sub>0.33</sub>Mn<sub>0.67</sub>O<sub>2</sub> (NNMO) is regarded as a viable cathode material because of its open structure, high theoretical capacity, and simplicity in preparation. However, it suffers from intrinsic lattice distortion, complex phase transitions, and severe Na<sup>+</sup>/vacancy ordering severe issues. In this study, the synthesized Na<sub>0.78</sub>Li<sub>0.05</sub>Cu<sub>0.05</sub>Ni<sub>0.25</sub>Mn<sub>0.6</sub>Ti<sub>0.05</sub>O<sub>2</sub> (NLCNMTO) cathode material introduces the substitution of Li, Cu, and Ti for Ni and Mn. Through the synergistic effect of multiple ions, the structural stability is improved and the Na<sup>+</sup>/vacancy ordering and phase transition are suppressed at high voltage. NLCNMTO materials have better ionic conductivity and stronger TM–O covalent bonds, which improves the composites’ ionic diffusion rate and structural stability. It is stabilized in the P2 phase over a voltage range of 2–4.5 V with good cycling stability and multiplicative performance. This study provides a possible multi-ion codoping design for advanced SIBs cathode materials with optimized high-voltage activity as well as excellent structural stability.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 1\",\"pages\":\"99–107 99–107\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01982\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01982","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

层状p2型Na0.67Ni0.33Mn0.67O2 (NNMO)结构开放,理论容量高,制备简单,被认为是一种可行的正极材料。然而,它存在固有的晶格畸变、复杂的相变和严重的Na+/空位有序等严重问题。在本研究中,合成的Na0.78Li0.05Cu0.05Ni0.25Mn0.6Ti0.05O2 (NLCNMTO)正极材料引入了Li、Cu和Ti取代Ni和Mn的方法。在高压下,通过多离子的协同作用,提高了结构的稳定性,抑制了Na+/空位的有序和相变。NLCNMTO材料具有更好的离子电导率和更强的TM-O共价键,提高了复合材料的离子扩散速率和结构稳定性。它在2-4.5 V的电压范围内稳定在P2相,具有良好的循环稳定性和乘法性能。该研究为先进SIBs正极材料提供了一种可能的多离子共掺杂设计,具有优化的高压活性和优异的结构稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Co-operative Interaction of Multiple Ions for P2-Type Sodium-Ion Battery Cathodes at High-Voltage Cyclability

Co-operative Interaction of Multiple Ions for P2-Type Sodium-Ion Battery Cathodes at High-Voltage Cyclability

Layered P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) is regarded as a viable cathode material because of its open structure, high theoretical capacity, and simplicity in preparation. However, it suffers from intrinsic lattice distortion, complex phase transitions, and severe Na+/vacancy ordering severe issues. In this study, the synthesized Na0.78Li0.05Cu0.05Ni0.25Mn0.6Ti0.05O2 (NLCNMTO) cathode material introduces the substitution of Li, Cu, and Ti for Ni and Mn. Through the synergistic effect of multiple ions, the structural stability is improved and the Na+/vacancy ordering and phase transition are suppressed at high voltage. NLCNMTO materials have better ionic conductivity and stronger TM–O covalent bonds, which improves the composites’ ionic diffusion rate and structural stability. It is stabilized in the P2 phase over a voltage range of 2–4.5 V with good cycling stability and multiplicative performance. This study provides a possible multi-ion codoping design for advanced SIBs cathode materials with optimized high-voltage activity as well as excellent structural stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信