一种用于无枝晶和无阳极锂金属电池的优良亲锂性和坚固的复合界面层

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Chen Yang, Yan Jiang, Yuanyuan Yu, Yingying zhao, Jiadeng Zhu and Mengjin Jiang*, 
{"title":"一种用于无枝晶和无阳极锂金属电池的优良亲锂性和坚固的复合界面层","authors":"Chen Yang,&nbsp;Yan Jiang,&nbsp;Yuanyuan Yu,&nbsp;Yingying zhao,&nbsp;Jiadeng Zhu and Mengjin Jiang*,&nbsp;","doi":"10.1021/acsaem.4c0275710.1021/acsaem.4c02757","DOIUrl":null,"url":null,"abstract":"<p >Anode-free lithium metal batteries (AFLMBs) are highly effective for enhancing the battery energy density. However, the unstable interface between the lithium metal anode and electrolyte compromises the reversibility of lithium deposition and stripping processes, ultimately limiting the cycle life of AFLMBs. To address this challenge, we developed a straightforward method involving coating a copper current collector with a composite layer. This layer comprises high-dielectric, high-modulus LiF nanoparticles combined with highly ion-conductive, robust polyoxadiazole (POD) material. Meanwhile, POD can be reduced to POD<sup><i>n</i>–</sup> at low potential. Hence, the resulting LiF@POD<sup><i>n</i>–</sup> composite film exhibits strong lithium-ion adsorption and a high lithium-ion transference number, facilitating improved lithium-ion transport, nucleation, and deposition. At a deposition capacity of 1 mAh cm<sup>–2</sup>, the Cu/Li half-cell achieved an impressive Coulombic efficiency (CE) of 99.1% after 500 cycles. In subsequent full-cell tests utilizing a high-loading LiFePO<sub>4</sub> (LFP) cathode (12.3 mg cm<sup>–2</sup>), the capacity retention remains substantial at 74.1% over 300 cycles. Similarly, in full-cell testing with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode at a 3 mAh cm<sup>–2</sup> areal capacity, the average CE reaches 99.5% over 150 cycles with a capacity retention rate of 82.3%. This unique polymer composite interface layer design provides an effective strategy for advancing AFLMB technology.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 1","pages":"581–590 581–590"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Superior Lithiophilic and Robust Composite Interface Layer for Dendrite- and Anode-Free Lithium Metal Batteries\",\"authors\":\"Chen Yang,&nbsp;Yan Jiang,&nbsp;Yuanyuan Yu,&nbsp;Yingying zhao,&nbsp;Jiadeng Zhu and Mengjin Jiang*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0275710.1021/acsaem.4c02757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Anode-free lithium metal batteries (AFLMBs) are highly effective for enhancing the battery energy density. However, the unstable interface between the lithium metal anode and electrolyte compromises the reversibility of lithium deposition and stripping processes, ultimately limiting the cycle life of AFLMBs. To address this challenge, we developed a straightforward method involving coating a copper current collector with a composite layer. This layer comprises high-dielectric, high-modulus LiF nanoparticles combined with highly ion-conductive, robust polyoxadiazole (POD) material. Meanwhile, POD can be reduced to POD<sup><i>n</i>–</sup> at low potential. Hence, the resulting LiF@POD<sup><i>n</i>–</sup> composite film exhibits strong lithium-ion adsorption and a high lithium-ion transference number, facilitating improved lithium-ion transport, nucleation, and deposition. At a deposition capacity of 1 mAh cm<sup>–2</sup>, the Cu/Li half-cell achieved an impressive Coulombic efficiency (CE) of 99.1% after 500 cycles. In subsequent full-cell tests utilizing a high-loading LiFePO<sub>4</sub> (LFP) cathode (12.3 mg cm<sup>–2</sup>), the capacity retention remains substantial at 74.1% over 300 cycles. Similarly, in full-cell testing with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode at a 3 mAh cm<sup>–2</sup> areal capacity, the average CE reaches 99.5% over 150 cycles with a capacity retention rate of 82.3%. This unique polymer composite interface layer design provides an effective strategy for advancing AFLMB technology.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 1\",\"pages\":\"581–590 581–590\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02757\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02757","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

无阳极锂金属电池(aflmb)是提高电池能量密度的有效材料。然而,锂金属阳极和电解质之间不稳定的界面影响了锂沉积和剥离过程的可逆性,最终限制了aflmb的循环寿命。为了解决这一挑战,我们开发了一种简单的方法,包括在铜集流器上涂上复合层。该层由高介电、高模量的LiF纳米颗粒与高离子导电性、坚固的聚恶二唑(POD)材料结合而成。同时,POD可以在低电位下还原为PODn -。因此,得到的LiF@PODn -复合膜具有较强的锂离子吸附能力和较高的锂离子转移数,有利于改善锂离子的输运、成核和沉积。在1 mAh cm-2的沉积容量下,经过500次循环后,Cu/Li半电池的库仑效率(CE)达到了令人印象深刻的99.1%。在随后的全电池测试中,使用高负载LiFePO4 (LFP)阴极(12.3 mg cm-2),在300次循环中,容量保持率保持在74.1%。同样,在使用LiNi0.8Co0.1Mn0.1O2 (NCM811)阴极进行的全电池测试中,在3 mAh cm-2面积容量下,150次循环的平均CE达到99.5%,容量保持率为82.3%。这种独特的聚合物复合界面层设计为推进AFLMB技术提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Superior Lithiophilic and Robust Composite Interface Layer for Dendrite- and Anode-Free Lithium Metal Batteries

A Superior Lithiophilic and Robust Composite Interface Layer for Dendrite- and Anode-Free Lithium Metal Batteries

Anode-free lithium metal batteries (AFLMBs) are highly effective for enhancing the battery energy density. However, the unstable interface between the lithium metal anode and electrolyte compromises the reversibility of lithium deposition and stripping processes, ultimately limiting the cycle life of AFLMBs. To address this challenge, we developed a straightforward method involving coating a copper current collector with a composite layer. This layer comprises high-dielectric, high-modulus LiF nanoparticles combined with highly ion-conductive, robust polyoxadiazole (POD) material. Meanwhile, POD can be reduced to PODn at low potential. Hence, the resulting LiF@PODn composite film exhibits strong lithium-ion adsorption and a high lithium-ion transference number, facilitating improved lithium-ion transport, nucleation, and deposition. At a deposition capacity of 1 mAh cm–2, the Cu/Li half-cell achieved an impressive Coulombic efficiency (CE) of 99.1% after 500 cycles. In subsequent full-cell tests utilizing a high-loading LiFePO4 (LFP) cathode (12.3 mg cm–2), the capacity retention remains substantial at 74.1% over 300 cycles. Similarly, in full-cell testing with a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode at a 3 mAh cm–2 areal capacity, the average CE reaches 99.5% over 150 cycles with a capacity retention rate of 82.3%. This unique polymer composite interface layer design provides an effective strategy for advancing AFLMB technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信