通过掺杂剂介导的三苯基介生基质结构修饰提高太阳能热燃料效率

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ashy, Kamalika Banerjee and Monika Gupta*, 
{"title":"通过掺杂剂介导的三苯基介生基质结构修饰提高太阳能热燃料效率","authors":"Ashy,&nbsp;Kamalika Banerjee and Monika Gupta*,&nbsp;","doi":"10.1021/acsaem.4c0232810.1021/acsaem.4c02328","DOIUrl":null,"url":null,"abstract":"<p >Solar thermal energy storage (STES) presents a promising solution for overcoming the challenges associated with intermittent solar energy capture and storage. By harnessing concentrated solar heat to photothermal energy conversion, solar thermal fuels (STFs) offer a unique approach for achieving long-term energy storage and on-demand energy delivery. Addressing this, we investigated the incorporation of discotic nematic hexa-azobenzene-functionalized triphenylene (TPAB) into columnar hexagonal self-assemblies of hexa-alkoxytriphenylene (TP) liquid crystal (LC) matrices to improve STF efficiency. By variation of the dopant concentration, the impact on energy storage and release properties is explored. X-ray diffraction (XRD) analysis unveils a correlation between the dopant concentration and LC packing, indicating disruption of the ordered structure at higher concentrations. Polarized optical microscopy (POM) images indicate a transition from an ordered columnar hexagonal (Col<sub>h</sub>) mesophase to isotropic phases in <i>cis</i>-rich films with increasing dopant concentration, influencing heat release behavior. Experimental findings demonstrate that optimal heat release occurs at specific dopant concentrations like 1.5 wt % for <b>1a</b> and 1 wt % for <b>2a</b> due to the interplay of isomerization and lattice enthalpy. The heat release dynamics were observed in both green light emitting diode (LED) and direct sunlight-charged thin films. These insights contribute to understanding dopant-mediated enhancements in STF performance, offering valuable guidance for advancing the creation of next-generation STES systems.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 1","pages":"259–266 259–266"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Solar Thermal Fuel Efficiency through Dopant-Mediated Structural Modifications in Triphenylene-Based Mesogenic Matrices\",\"authors\":\"Ashy,&nbsp;Kamalika Banerjee and Monika Gupta*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0232810.1021/acsaem.4c02328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solar thermal energy storage (STES) presents a promising solution for overcoming the challenges associated with intermittent solar energy capture and storage. By harnessing concentrated solar heat to photothermal energy conversion, solar thermal fuels (STFs) offer a unique approach for achieving long-term energy storage and on-demand energy delivery. Addressing this, we investigated the incorporation of discotic nematic hexa-azobenzene-functionalized triphenylene (TPAB) into columnar hexagonal self-assemblies of hexa-alkoxytriphenylene (TP) liquid crystal (LC) matrices to improve STF efficiency. By variation of the dopant concentration, the impact on energy storage and release properties is explored. X-ray diffraction (XRD) analysis unveils a correlation between the dopant concentration and LC packing, indicating disruption of the ordered structure at higher concentrations. Polarized optical microscopy (POM) images indicate a transition from an ordered columnar hexagonal (Col<sub>h</sub>) mesophase to isotropic phases in <i>cis</i>-rich films with increasing dopant concentration, influencing heat release behavior. Experimental findings demonstrate that optimal heat release occurs at specific dopant concentrations like 1.5 wt % for <b>1a</b> and 1 wt % for <b>2a</b> due to the interplay of isomerization and lattice enthalpy. The heat release dynamics were observed in both green light emitting diode (LED) and direct sunlight-charged thin films. These insights contribute to understanding dopant-mediated enhancements in STF performance, offering valuable guidance for advancing the creation of next-generation STES systems.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 1\",\"pages\":\"259–266 259–266\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02328\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02328","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能热能储存(STES)为克服与间歇性太阳能捕获和储存相关的挑战提供了一个有前途的解决方案。通过利用集中的太阳热能进行光热能量转换,太阳能热燃料(stf)为实现长期能源储存和按需能源输送提供了一种独特的方法。为了解决这个问题,我们研究了将盘状向列六偶氮苯功能化三苯(TPAB)加入六烷氧三苯(TP)液晶(LC)基质的柱状六方自组装中以提高STF效率。通过掺杂剂浓度的变化,探讨了其对储能和释放性能的影响。x射线衍射(XRD)分析揭示了掺杂浓度与LC堆积之间的相关性,表明在较高浓度下有序结构被破坏。偏振光学显微镜(POM)图像显示,随着掺杂剂浓度的增加,顺式富膜从有序柱状六边形(Colh)中间相转变为各向同性相,影响热释放行为。实验结果表明,由于异构化和晶格焓的相互作用,在特定的掺杂浓度下,如1a为1.5 wt %和2a为1 wt %时,会发生最佳的放热。研究了绿色发光二极管(LED)和阳光直接充电薄膜的放热动力学。这些见解有助于理解掺杂剂介导的STF性能增强,为推进下一代STES系统的创建提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Solar Thermal Fuel Efficiency through Dopant-Mediated Structural Modifications in Triphenylene-Based Mesogenic Matrices

Enhancing Solar Thermal Fuel Efficiency through Dopant-Mediated Structural Modifications in Triphenylene-Based Mesogenic Matrices

Solar thermal energy storage (STES) presents a promising solution for overcoming the challenges associated with intermittent solar energy capture and storage. By harnessing concentrated solar heat to photothermal energy conversion, solar thermal fuels (STFs) offer a unique approach for achieving long-term energy storage and on-demand energy delivery. Addressing this, we investigated the incorporation of discotic nematic hexa-azobenzene-functionalized triphenylene (TPAB) into columnar hexagonal self-assemblies of hexa-alkoxytriphenylene (TP) liquid crystal (LC) matrices to improve STF efficiency. By variation of the dopant concentration, the impact on energy storage and release properties is explored. X-ray diffraction (XRD) analysis unveils a correlation between the dopant concentration and LC packing, indicating disruption of the ordered structure at higher concentrations. Polarized optical microscopy (POM) images indicate a transition from an ordered columnar hexagonal (Colh) mesophase to isotropic phases in cis-rich films with increasing dopant concentration, influencing heat release behavior. Experimental findings demonstrate that optimal heat release occurs at specific dopant concentrations like 1.5 wt % for 1a and 1 wt % for 2a due to the interplay of isomerization and lattice enthalpy. The heat release dynamics were observed in both green light emitting diode (LED) and direct sunlight-charged thin films. These insights contribute to understanding dopant-mediated enhancements in STF performance, offering valuable guidance for advancing the creation of next-generation STES systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信