基于人工神经网络的性能预测鲁棒方法:结合二氧化碳离子液体混合物的关键结构特征

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Hugo Marques, José N. Canongia Lopes, Adilson Alves de Freitas, Karina Shimizu and Pedro S. F. Mendes*, 
{"title":"基于人工神经网络的性能预测鲁棒方法:结合二氧化碳离子液体混合物的关键结构特征","authors":"Hugo Marques,&nbsp;José N. Canongia Lopes,&nbsp;Adilson Alves de Freitas,&nbsp;Karina Shimizu and Pedro S. F. Mendes*,&nbsp;","doi":"10.1021/acs.jpcb.4c0443210.1021/acs.jpcb.4c04432","DOIUrl":null,"url":null,"abstract":"<p >This study addresses a critical gap in the existing literature on carbon dioxide and ionic liquid (IL) mixtures, where fragmented and incomplete data, particularly for flow properties, hinder practical applications. Therefore, this work aimed to establish a robust and efficient method for predicting the density of the CO<sub>2</sub>–IL mixtures across diverse operating conditions and IL families using novel validation techniques. Both linear and symbolic regression models provided relevant insights but failed to accurately capture the IL–CO<sub>2</sub> interactions in a mixture that determine the molar volume of CO<sub>2</sub> at infinite dilution when solubilized by a given IL. Therefore, more mathematically flexible artificial neural networks (ANN) were trained based on three different sets of features: (1) IL critical properties, (2) IL structural descriptors, and (3) a selective combination of (1) and (2). While all models showed relative deviations consistently below 3% for the testing data, combining critical and structural data significantly improved accuracy (<i>R</i><sup>2</sup> = 0.986, testing data set). A postprocessing outlier-handling method enhanced model performance, removing a minimal fraction (below 0.2%) of unphysical data points. Furthermore, molecular dynamics simulations validated the robust generalization of all ANN models, with the combined model exhibiting remarkable accuracy over operating conditions outside the training ranges for ILs in the training set and even for ILs that are not included in this data set. This computational approach provides a significantly faster and broader alternative to other thermodynamical tools, establishing a solid method for future machine learning (ML)-based property prediction augmented by external validation from cross-comparison tests and statistical thermodynamics models.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 1","pages":"286–304 286–304"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Method for Property Prediction via Artificial Neural Networks: Incorporating Key Structural Features for Carbon Dioxide–Ionic Liquid Mixtures\",\"authors\":\"Hugo Marques,&nbsp;José N. Canongia Lopes,&nbsp;Adilson Alves de Freitas,&nbsp;Karina Shimizu and Pedro S. F. Mendes*,&nbsp;\",\"doi\":\"10.1021/acs.jpcb.4c0443210.1021/acs.jpcb.4c04432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study addresses a critical gap in the existing literature on carbon dioxide and ionic liquid (IL) mixtures, where fragmented and incomplete data, particularly for flow properties, hinder practical applications. Therefore, this work aimed to establish a robust and efficient method for predicting the density of the CO<sub>2</sub>–IL mixtures across diverse operating conditions and IL families using novel validation techniques. Both linear and symbolic regression models provided relevant insights but failed to accurately capture the IL–CO<sub>2</sub> interactions in a mixture that determine the molar volume of CO<sub>2</sub> at infinite dilution when solubilized by a given IL. Therefore, more mathematically flexible artificial neural networks (ANN) were trained based on three different sets of features: (1) IL critical properties, (2) IL structural descriptors, and (3) a selective combination of (1) and (2). While all models showed relative deviations consistently below 3% for the testing data, combining critical and structural data significantly improved accuracy (<i>R</i><sup>2</sup> = 0.986, testing data set). A postprocessing outlier-handling method enhanced model performance, removing a minimal fraction (below 0.2%) of unphysical data points. Furthermore, molecular dynamics simulations validated the robust generalization of all ANN models, with the combined model exhibiting remarkable accuracy over operating conditions outside the training ranges for ILs in the training set and even for ILs that are not included in this data set. This computational approach provides a significantly faster and broader alternative to other thermodynamical tools, establishing a solid method for future machine learning (ML)-based property prediction augmented by external validation from cross-comparison tests and statistical thermodynamics models.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"129 1\",\"pages\":\"286–304 286–304\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c04432\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c04432","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究解决了现有二氧化碳和离子液体(IL)混合物文献中的一个关键空白,其中碎片化和不完整的数据,特别是流动特性,阻碍了实际应用。因此,这项工作旨在建立一种强大而有效的方法来预测不同操作条件和IL族的CO2-IL混合物的密度,使用新的验证技术。线性和符号回归模型都提供了相关的见解,但未能准确捕获混合物中IL - CO2的相互作用,这些相互作用决定了给定IL溶解时无限稀释CO2的摩尔体积。因此,基于三组不同的特征,在数学上更灵活的人工神经网络(ANN)进行了训练:(1) IL关键属性,(2)IL结构描述符,(3)(1)和(2)的选择性组合。虽然所有模型在测试数据上的相对偏差始终低于3%,但将关键数据和结构数据结合在一起显著提高了准确性(R2 = 0.986,测试数据集)。一种后处理异常值处理方法增强了模型的性能,去除了极小部分(低于0.2%)的非物理数据点。此外,分子动力学模拟验证了所有人工神经网络模型的鲁棒泛化,对于训练集中的il,甚至对于未包含在该数据集中的il,组合模型在训练范围之外的操作条件下都表现出显着的准确性。与其他热力学工具相比,这种计算方法提供了一种更快、更广泛的替代方案,为未来基于机器学习(ML)的属性预测建立了一种可靠的方法,并通过交叉比较测试和统计热力学模型的外部验证进行了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust Method for Property Prediction via Artificial Neural Networks: Incorporating Key Structural Features for Carbon Dioxide–Ionic Liquid Mixtures

Robust Method for Property Prediction via Artificial Neural Networks: Incorporating Key Structural Features for Carbon Dioxide–Ionic Liquid Mixtures

This study addresses a critical gap in the existing literature on carbon dioxide and ionic liquid (IL) mixtures, where fragmented and incomplete data, particularly for flow properties, hinder practical applications. Therefore, this work aimed to establish a robust and efficient method for predicting the density of the CO2–IL mixtures across diverse operating conditions and IL families using novel validation techniques. Both linear and symbolic regression models provided relevant insights but failed to accurately capture the IL–CO2 interactions in a mixture that determine the molar volume of CO2 at infinite dilution when solubilized by a given IL. Therefore, more mathematically flexible artificial neural networks (ANN) were trained based on three different sets of features: (1) IL critical properties, (2) IL structural descriptors, and (3) a selective combination of (1) and (2). While all models showed relative deviations consistently below 3% for the testing data, combining critical and structural data significantly improved accuracy (R2 = 0.986, testing data set). A postprocessing outlier-handling method enhanced model performance, removing a minimal fraction (below 0.2%) of unphysical data points. Furthermore, molecular dynamics simulations validated the robust generalization of all ANN models, with the combined model exhibiting remarkable accuracy over operating conditions outside the training ranges for ILs in the training set and even for ILs that are not included in this data set. This computational approach provides a significantly faster and broader alternative to other thermodynamical tools, establishing a solid method for future machine learning (ML)-based property prediction augmented by external validation from cross-comparison tests and statistical thermodynamics models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信