Goran Giudetti, Shaama Mallikarjun Sharada, Anna I. Krylov
{"title":"基于aimd的光催化发色团激复荧光光谱和系统间交叉建模方法","authors":"Goran Giudetti, Shaama Mallikarjun Sharada, Anna I. Krylov","doi":"10.1002/jcc.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study introduces a computational protocol for modeling the emission spectra of exciplexes using excited-state ab initio molecular dynamics (AIMD) simulations. The protocol is applied to a model exciplex formed by oligo-p-phenylenes (OPPs) and triethylamine (TEA), which is of interest in the context of photocatalytic reduction of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math>. AIMD facilitates efficient sampling of the conformational space of OPP3 and OPP4 exciplexes with TEA, offering a dynamic alternative to previously employed static methods. The AIMD-based protocol successfully reproduces experimental emission spectra for OPP-TEA exciplexes, agreeing with previous computational and experimental findings. The results show that AIMD simulations provide an efficient means of sampling the conformational space of these exciplexes, requiring less user input and, in some instances, fewer computational resources than multiple excited-state optimizations initiated from user-specified initial structures. The study also evaluates the yield of intersystem crossing (ISC) using AIMD and Landau-Zener probability. The results suggest that ISC is a minor decay channel for OPP3 and OPP4. This work provides new insights into the structural flexibility and emission characteristics of OPP-TEA photoredox catalyst systems, potentially contributing to improved design strategies for organic chromophores in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>CO</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> reduction applications.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIMD-Based Protocols for Modeling Exciplex Fluorescence Spectra and Inter-System Crossing in Photocatalytic Chromophores\",\"authors\":\"Goran Giudetti, Shaama Mallikarjun Sharada, Anna I. Krylov\",\"doi\":\"10.1002/jcc.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study introduces a computational protocol for modeling the emission spectra of exciplexes using excited-state ab initio molecular dynamics (AIMD) simulations. The protocol is applied to a model exciplex formed by oligo-p-phenylenes (OPPs) and triethylamine (TEA), which is of interest in the context of photocatalytic reduction of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math>. AIMD facilitates efficient sampling of the conformational space of OPP3 and OPP4 exciplexes with TEA, offering a dynamic alternative to previously employed static methods. The AIMD-based protocol successfully reproduces experimental emission spectra for OPP-TEA exciplexes, agreeing with previous computational and experimental findings. The results show that AIMD simulations provide an efficient means of sampling the conformational space of these exciplexes, requiring less user input and, in some instances, fewer computational resources than multiple excited-state optimizations initiated from user-specified initial structures. The study also evaluates the yield of intersystem crossing (ISC) using AIMD and Landau-Zener probability. The results suggest that ISC is a minor decay channel for OPP3 and OPP4. This work provides new insights into the structural flexibility and emission characteristics of OPP-TEA photoredox catalyst systems, potentially contributing to improved design strategies for organic chromophores in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>CO</mtext>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{CO}}_2 $$</annotation>\\n </semantics></math> reduction applications.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70049\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70049","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
AIMD-Based Protocols for Modeling Exciplex Fluorescence Spectra and Inter-System Crossing in Photocatalytic Chromophores
This study introduces a computational protocol for modeling the emission spectra of exciplexes using excited-state ab initio molecular dynamics (AIMD) simulations. The protocol is applied to a model exciplex formed by oligo-p-phenylenes (OPPs) and triethylamine (TEA), which is of interest in the context of photocatalytic reduction of . AIMD facilitates efficient sampling of the conformational space of OPP3 and OPP4 exciplexes with TEA, offering a dynamic alternative to previously employed static methods. The AIMD-based protocol successfully reproduces experimental emission spectra for OPP-TEA exciplexes, agreeing with previous computational and experimental findings. The results show that AIMD simulations provide an efficient means of sampling the conformational space of these exciplexes, requiring less user input and, in some instances, fewer computational resources than multiple excited-state optimizations initiated from user-specified initial structures. The study also evaluates the yield of intersystem crossing (ISC) using AIMD and Landau-Zener probability. The results suggest that ISC is a minor decay channel for OPP3 and OPP4. This work provides new insights into the structural flexibility and emission characteristics of OPP-TEA photoredox catalyst systems, potentially contributing to improved design strategies for organic chromophores in reduction applications.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.