{"title":"SC-VDTwinAuth:基于智能合约的车辆数字孪生网络切换认证协议","authors":"Deepika Gautam, Garima Thakur, Sunil Prajapat, Pankaj Kumar","doi":"10.1016/j.vehcom.2025.100890","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicular digital twin network is partitioned into multiple networks either due to the geographical differences or their accelerating expansion, which necessitates a secure and incessant transition of cross-regional vehicles. Therefore, in this dynamic topology, the handover process for cross-regional vehicles becomes imperative. The literature encompasses an abundance of blockchain-based handover mechanisms, specifically designed for vehicle and the roadside units. Unfortunately, some of these are not feasible for vehicular digital twin networks due to their high computational overhead and susceptibility to security threats. Therefore, this paper presents a handover authentication protocol for the blockchain-based vehicular digital twin networks, leveraging the smart contract. It entirely depends on digital twin, which reduces the burden of the vehicle and enhances the efficiency and security of the handover process. Security strengths and competency against attacks like sybil and impersonation attacks are investigated through a real-or-random oracle model (ROR) and non-mathematical analysis. The operational analysis evaluates the proposed mechanism with pertinent works based on security functionalities, computation, and communication overhead. Moreover, to illustrate suggested smart contract's viability and the reasonable cost of blockchain consumption, it is implemented via the Ethereum test network. Hence, obtained results indicate the relevancy of the mechanism for vehicular digital twin networks.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100890"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SC-VDTwinAuth: Smart-contract Assisted Handover Authentication Protocol for Vehicular Digital Twin Network\",\"authors\":\"Deepika Gautam, Garima Thakur, Sunil Prajapat, Pankaj Kumar\",\"doi\":\"10.1016/j.vehcom.2025.100890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vehicular digital twin network is partitioned into multiple networks either due to the geographical differences or their accelerating expansion, which necessitates a secure and incessant transition of cross-regional vehicles. Therefore, in this dynamic topology, the handover process for cross-regional vehicles becomes imperative. The literature encompasses an abundance of blockchain-based handover mechanisms, specifically designed for vehicle and the roadside units. Unfortunately, some of these are not feasible for vehicular digital twin networks due to their high computational overhead and susceptibility to security threats. Therefore, this paper presents a handover authentication protocol for the blockchain-based vehicular digital twin networks, leveraging the smart contract. It entirely depends on digital twin, which reduces the burden of the vehicle and enhances the efficiency and security of the handover process. Security strengths and competency against attacks like sybil and impersonation attacks are investigated through a real-or-random oracle model (ROR) and non-mathematical analysis. The operational analysis evaluates the proposed mechanism with pertinent works based on security functionalities, computation, and communication overhead. Moreover, to illustrate suggested smart contract's viability and the reasonable cost of blockchain consumption, it is implemented via the Ethereum test network. Hence, obtained results indicate the relevancy of the mechanism for vehicular digital twin networks.</div></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"53 \",\"pages\":\"Article 100890\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209625000178\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000178","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
SC-VDTwinAuth: Smart-contract Assisted Handover Authentication Protocol for Vehicular Digital Twin Network
Vehicular digital twin network is partitioned into multiple networks either due to the geographical differences or their accelerating expansion, which necessitates a secure and incessant transition of cross-regional vehicles. Therefore, in this dynamic topology, the handover process for cross-regional vehicles becomes imperative. The literature encompasses an abundance of blockchain-based handover mechanisms, specifically designed for vehicle and the roadside units. Unfortunately, some of these are not feasible for vehicular digital twin networks due to their high computational overhead and susceptibility to security threats. Therefore, this paper presents a handover authentication protocol for the blockchain-based vehicular digital twin networks, leveraging the smart contract. It entirely depends on digital twin, which reduces the burden of the vehicle and enhances the efficiency and security of the handover process. Security strengths and competency against attacks like sybil and impersonation attacks are investigated through a real-or-random oracle model (ROR) and non-mathematical analysis. The operational analysis evaluates the proposed mechanism with pertinent works based on security functionalities, computation, and communication overhead. Moreover, to illustrate suggested smart contract's viability and the reasonable cost of blockchain consumption, it is implemented via the Ethereum test network. Hence, obtained results indicate the relevancy of the mechanism for vehicular digital twin networks.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.