使用机器学习和回归模型的混合方法来预测难治性脓毒性休克的风险。

IF 6.3
Sejin Heo, Daun Jeong, Minyoung Choi, Inkyu Kim, Minha Kim, Ye Rim Lee, Byuk Sung Ko, Seung Mok Ryoo, Eunah Han, Hyunglan Chang, Chang June Yune, Hui Jai Lee, Gil Joon Suh, Sung-Hyuk Choi, Sung Phil Chung, Tae Ho Lim, Won Young Kim, Kyuseok Kim, Sung Yeon Hwang, Jong Eun Park, Gun Tak Lee, Tae Gun Shin
{"title":"使用机器学习和回归模型的混合方法来预测难治性脓毒性休克的风险。","authors":"Sejin Heo, Daun Jeong, Minyoung Choi, Inkyu Kim, Minha Kim, Ye Rim Lee, Byuk Sung Ko, Seung Mok Ryoo, Eunah Han, Hyunglan Chang, Chang June Yune, Hui Jai Lee, Gil Joon Suh, Sung-Hyuk Choi, Sung Phil Chung, Tae Ho Lim, Won Young Kim, Kyuseok Kim, Sung Yeon Hwang, Jong Eun Park, Gun Tak Lee, Tae Gun Shin","doi":"10.55633/s3me/108.2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a scale to predict refractory septic shock (SS) based on clinical variables recorded during initial evaluations of patients.</p><p><strong>Methods: </strong>Multicenter retrospective study of data for patients with suspected infection registered in the Marketplace for Medical Information in Intensive Care (MIMIC-IV). These data were used for the development and internal validation of the refractory SS scale (RSSS). For external validation, we used retrospective data for 2 cohorts: 1) patients diagnosed with SS in an emergency department (ED cohort) whose data were registered in a Korean SS registry, and 2) patients diagnosed with SS in 6 hospital intensive care units (ICU cohort). A machine-learning automatic clinical scoring system (AutoScore) was used in the development phase. The performance of the RSSS in the validation cohorts was assessed with the area under the receiver operating characteristic curve (AUROC) for each. The primary outcome was the development of refractory SS within 24 hours of ICU admission. Refractory SS was defined by the need for a norepinephrine-equivalent dose greater than 0.5 µg/kg/min.</p><p><strong>Results: </strong>We collected data for 29 618 patients from the MIMIC-IV registry, 3113 patients for the ED cohort, and 1015 for the ICU cohort. The RSSS had 6 predictors: serum lactate level, systolic blood pressure, heart rate, temperature, arterial pH, and leukocyte count. The scale's AUROCs were as follows: 0.873 (95% CI, 0.846-0.900) in the internal validation, 0.705 (95% CI, 0.678-0.733) in the ED cohort on arrival, 0.781 (95% CI, 0.757-0.805) in the ED cohort at the moment of diagnosing hypoperfusion or hypotension, and 0.822 (95% CI, 0.787-0.857) in the ICU cohort. Calibration was acceptable in all the cohorts.</p><p><strong>Conclusions: </strong>The RSSS had adequate diagnostic accuracy in multiple cohorts of patients diagnosed in the ED and ICU.</p>","PeriodicalId":93987,"journal":{"name":"Emergencias : revista de la Sociedad Espanola de Medicina de Emergencias","volume":"37 1","pages":"15-22"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale to predict risk for refractory septic shock based on a hybrid approach using machine learning and regression modeling.\",\"authors\":\"Sejin Heo, Daun Jeong, Minyoung Choi, Inkyu Kim, Minha Kim, Ye Rim Lee, Byuk Sung Ko, Seung Mok Ryoo, Eunah Han, Hyunglan Chang, Chang June Yune, Hui Jai Lee, Gil Joon Suh, Sung-Hyuk Choi, Sung Phil Chung, Tae Ho Lim, Won Young Kim, Kyuseok Kim, Sung Yeon Hwang, Jong Eun Park, Gun Tak Lee, Tae Gun Shin\",\"doi\":\"10.55633/s3me/108.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop a scale to predict refractory septic shock (SS) based on clinical variables recorded during initial evaluations of patients.</p><p><strong>Methods: </strong>Multicenter retrospective study of data for patients with suspected infection registered in the Marketplace for Medical Information in Intensive Care (MIMIC-IV). These data were used for the development and internal validation of the refractory SS scale (RSSS). For external validation, we used retrospective data for 2 cohorts: 1) patients diagnosed with SS in an emergency department (ED cohort) whose data were registered in a Korean SS registry, and 2) patients diagnosed with SS in 6 hospital intensive care units (ICU cohort). A machine-learning automatic clinical scoring system (AutoScore) was used in the development phase. The performance of the RSSS in the validation cohorts was assessed with the area under the receiver operating characteristic curve (AUROC) for each. The primary outcome was the development of refractory SS within 24 hours of ICU admission. Refractory SS was defined by the need for a norepinephrine-equivalent dose greater than 0.5 µg/kg/min.</p><p><strong>Results: </strong>We collected data for 29 618 patients from the MIMIC-IV registry, 3113 patients for the ED cohort, and 1015 for the ICU cohort. The RSSS had 6 predictors: serum lactate level, systolic blood pressure, heart rate, temperature, arterial pH, and leukocyte count. The scale's AUROCs were as follows: 0.873 (95% CI, 0.846-0.900) in the internal validation, 0.705 (95% CI, 0.678-0.733) in the ED cohort on arrival, 0.781 (95% CI, 0.757-0.805) in the ED cohort at the moment of diagnosing hypoperfusion or hypotension, and 0.822 (95% CI, 0.787-0.857) in the ICU cohort. Calibration was acceptable in all the cohorts.</p><p><strong>Conclusions: </strong>The RSSS had adequate diagnostic accuracy in multiple cohorts of patients diagnosed in the ED and ICU.</p>\",\"PeriodicalId\":93987,\"journal\":{\"name\":\"Emergencias : revista de la Sociedad Espanola de Medicina de Emergencias\",\"volume\":\"37 1\",\"pages\":\"15-22\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emergencias : revista de la Sociedad Espanola de Medicina de Emergencias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55633/s3me/108.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emergencias : revista de la Sociedad Espanola de Medicina de Emergencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55633/s3me/108.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:根据患者初始评估时记录的临床变量,建立预测难治性脓毒性休克(SS)的量表。方法:对重症监护医疗信息市场(MIMIC-IV)登记的疑似感染患者进行多中心回顾性研究。这些数据用于耐火SS量表(RSSS)的开发和内部验证。为了进行外部验证,我们使用了2个队列的回顾性数据:1)急诊科诊断为SS的患者(ED队列),其数据登记在韩国SS登记处;2)6家医院重症监护病房诊断为SS的患者(ICU队列)。在开发阶段使用了机器学习自动临床评分系统(AutoScore)。RSSS在验证队列中的性能通过每个队列的受试者工作特征曲线下面积(AUROC)进行评估。主要结局是在ICU入院24小时内难治性SS的发展。难治性SS的定义是需要大于0.5µg/kg/min的去甲肾上腺素当量剂量。结果:我们从MIMIC-IV注册中心收集了29618例患者的数据,其中ED队列为3113例,ICU队列为1015例。RSSS有6个预测指标:血清乳酸水平、收缩压、心率、体温、动脉pH值和白细胞计数。量表的auroc如下:内部验证为0.873 (95% CI, 0.846-0.900),到达时ED队列为0.705 (95% CI, 0.678-0.733),诊断低灌注或低血压时ED队列为0.781 (95% CI, 0.757-0.805), ICU队列为0.822 (95% CI, 0.887 -0.857)。校正在所有队列中均可接受。结论:RSSS对在急诊科和ICU诊断的多组患者具有足够的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale to predict risk for refractory septic shock based on a hybrid approach using machine learning and regression modeling.

Objective: To develop a scale to predict refractory septic shock (SS) based on clinical variables recorded during initial evaluations of patients.

Methods: Multicenter retrospective study of data for patients with suspected infection registered in the Marketplace for Medical Information in Intensive Care (MIMIC-IV). These data were used for the development and internal validation of the refractory SS scale (RSSS). For external validation, we used retrospective data for 2 cohorts: 1) patients diagnosed with SS in an emergency department (ED cohort) whose data were registered in a Korean SS registry, and 2) patients diagnosed with SS in 6 hospital intensive care units (ICU cohort). A machine-learning automatic clinical scoring system (AutoScore) was used in the development phase. The performance of the RSSS in the validation cohorts was assessed with the area under the receiver operating characteristic curve (AUROC) for each. The primary outcome was the development of refractory SS within 24 hours of ICU admission. Refractory SS was defined by the need for a norepinephrine-equivalent dose greater than 0.5 µg/kg/min.

Results: We collected data for 29 618 patients from the MIMIC-IV registry, 3113 patients for the ED cohort, and 1015 for the ICU cohort. The RSSS had 6 predictors: serum lactate level, systolic blood pressure, heart rate, temperature, arterial pH, and leukocyte count. The scale's AUROCs were as follows: 0.873 (95% CI, 0.846-0.900) in the internal validation, 0.705 (95% CI, 0.678-0.733) in the ED cohort on arrival, 0.781 (95% CI, 0.757-0.805) in the ED cohort at the moment of diagnosing hypoperfusion or hypotension, and 0.822 (95% CI, 0.787-0.857) in the ICU cohort. Calibration was acceptable in all the cohorts.

Conclusions: The RSSS had adequate diagnostic accuracy in multiple cohorts of patients diagnosed in the ED and ICU.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信