筛子法在张量积空间中的回归。

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Electronic Journal of Statistics Pub Date : 2023-01-01 Epub Date: 2023-12-07 DOI:10.1214/23-ejs2188
Tianyu Zhang, Noah Simon
{"title":"筛子法在张量积空间中的回归。","authors":"Tianyu Zhang, Noah Simon","doi":"10.1214/23-ejs2188","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of a conditional mean (linking a set of features to an outcome of interest) is a fundamental statistical task. While there is an appeal to flexible nonparametric procedures, effective estimation in many classical nonparametric function spaces, e.g., multivariate Sobolev spaces, can be prohibitively difficult - both statistically and computationally - especially when the number of features is large. In this paper, we present some sieve estimators for regression in multivariate product spaces. We take Sobolev-type smoothness spaces as an example, though our general framework can be applied to many reproducing kernel Hilbert spaces. These spaces are more amenable to multivariate regression, and allow us to, inpart, avoid the curse of dimensionality. Our estimator can be easily applied to multivariate nonparametric problems and has appealing statistical and computational properties. Moreover, it can effectively leverage additional structure such as feature sparsity.</p>","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"17 2","pages":"3660-3727"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784939/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regression in tensor product spaces by the method of sieves.\",\"authors\":\"Tianyu Zhang, Noah Simon\",\"doi\":\"10.1214/23-ejs2188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimation of a conditional mean (linking a set of features to an outcome of interest) is a fundamental statistical task. While there is an appeal to flexible nonparametric procedures, effective estimation in many classical nonparametric function spaces, e.g., multivariate Sobolev spaces, can be prohibitively difficult - both statistically and computationally - especially when the number of features is large. In this paper, we present some sieve estimators for regression in multivariate product spaces. We take Sobolev-type smoothness spaces as an example, though our general framework can be applied to many reproducing kernel Hilbert spaces. These spaces are more amenable to multivariate regression, and allow us to, inpart, avoid the curse of dimensionality. Our estimator can be easily applied to multivariate nonparametric problems and has appealing statistical and computational properties. Moreover, it can effectively leverage additional structure such as feature sparsity.</p>\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\"17 2\",\"pages\":\"3660-3727\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2188\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2188","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

条件均值的估计(将一组特征与感兴趣的结果联系起来)是一项基本的统计任务。虽然对灵活的非参数过程有吸引力,但在许多经典的非参数函数空间(例如多元Sobolev空间)中进行有效估计可能非常困难-无论是统计上还是计算上-特别是当特征数量很大时。本文给出了多元积空间中回归的一些筛估计。我们以sobolev型平滑空间为例,尽管我们的一般框架可以应用于许多再现核希尔伯特空间。这些空间更适合多元回归,并允许我们部分地避免维度的诅咒。我们的估计器可以很容易地应用于多元非参数问题,并具有吸引人的统计和计算性质。此外,它可以有效地利用额外的结构,如特征稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression in tensor product spaces by the method of sieves.

Estimation of a conditional mean (linking a set of features to an outcome of interest) is a fundamental statistical task. While there is an appeal to flexible nonparametric procedures, effective estimation in many classical nonparametric function spaces, e.g., multivariate Sobolev spaces, can be prohibitively difficult - both statistically and computationally - especially when the number of features is large. In this paper, we present some sieve estimators for regression in multivariate product spaces. We take Sobolev-type smoothness spaces as an example, though our general framework can be applied to many reproducing kernel Hilbert spaces. These spaces are more amenable to multivariate regression, and allow us to, inpart, avoid the curse of dimensionality. Our estimator can be easily applied to multivariate nonparametric problems and has appealing statistical and computational properties. Moreover, it can effectively leverage additional structure such as feature sparsity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信