推进个性化癌症治疗:onko_drugcombscreen——一款用于精确药物组合筛选的新型闪亮应用程序。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-01-31 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf004
Jingyu Yang, Meng Wang, Jürgen Dönitz, Björn Chapuy, Tim Beißbarth
{"title":"推进个性化癌症治疗:onko_drugcombscreen——一款用于精确药物组合筛选的新型闪亮应用程序。","authors":"Jingyu Yang, Meng Wang, Jürgen Dönitz, Björn Chapuy, Tim Beißbarth","doi":"10.1093/nargab/lqaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying and validating genotype-guided drug combinations for a specific molecular subtype in cancer therapy represents an unmet medical need and is important in enhancing efficacy and reducing toxicity. However, the exponential increase in combinatorial possibilities constrains the ability to identify and validate effective drug combinations. In this context, we have developed Onko_DrugCombScreen, an innovative tool aiming at advancing precision medicine based on identifying significant drug combination candidates in a target cancer cohort compared to a comparison cohort. Onko_DrugCombScreen, inspired by the molecular tumor board process, synergizes drug knowledgebase analysis with various statistical methodologies and data visualization techniques to pinpoint drug combination candidates. Validated through a TCGA-BRCA case study, Onko_DrugCombScreen has demonstrated its proficiency in discerning established drug combinations in a specific cancer type and in revealing potential novel drug combinations. By enhancing the capability of drug combination discovery through drug knowledgebases, Onko_DrugCombScreen represents a significant advancement in personalized cancer treatment by identifying promising drug combinations, setting the stage for the development of more precise and potent combination treatments in cancer care. The Onko_DrugCombScreen Shiny app is available at https://rshiny.gwdg.de/apps/onko_drugcombscreen/. The Git repository can be accessed at https://gitlab.gwdg.de/MedBioinf/mtb/onko_drugcombscreen.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf004"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing personalized cancer therapy: Onko_DrugCombScreen-a novel Shiny app for precision drug combination screening.\",\"authors\":\"Jingyu Yang, Meng Wang, Jürgen Dönitz, Björn Chapuy, Tim Beißbarth\",\"doi\":\"10.1093/nargab/lqaf004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying and validating genotype-guided drug combinations for a specific molecular subtype in cancer therapy represents an unmet medical need and is important in enhancing efficacy and reducing toxicity. However, the exponential increase in combinatorial possibilities constrains the ability to identify and validate effective drug combinations. In this context, we have developed Onko_DrugCombScreen, an innovative tool aiming at advancing precision medicine based on identifying significant drug combination candidates in a target cancer cohort compared to a comparison cohort. Onko_DrugCombScreen, inspired by the molecular tumor board process, synergizes drug knowledgebase analysis with various statistical methodologies and data visualization techniques to pinpoint drug combination candidates. Validated through a TCGA-BRCA case study, Onko_DrugCombScreen has demonstrated its proficiency in discerning established drug combinations in a specific cancer type and in revealing potential novel drug combinations. By enhancing the capability of drug combination discovery through drug knowledgebases, Onko_DrugCombScreen represents a significant advancement in personalized cancer treatment by identifying promising drug combinations, setting the stage for the development of more precise and potent combination treatments in cancer care. The Onko_DrugCombScreen Shiny app is available at https://rshiny.gwdg.de/apps/onko_drugcombscreen/. The Git repository can be accessed at https://gitlab.gwdg.de/MedBioinf/mtb/onko_drugcombscreen.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 1\",\"pages\":\"lqaf004\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqaf004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

在癌症治疗中,确定和验证针对特定分子亚型的基因型指导药物组合是一种未得到满足的医疗需求,对提高疗效和降低毒性非常重要。然而,组合可能性的指数增长限制了识别和验证有效药物组合的能力。在此背景下,我们开发了Onko_DrugCombScreen,这是一种创新工具,旨在通过与对照队列相比,在目标癌症队列中识别重要的候选药物组合来推进精准医疗。Onko_DrugCombScreen受分子肿瘤委员会流程的启发,将药物知识库分析与各种统计方法和数据可视化技术相结合,以确定候选药物组合。通过TCGA-BRCA案例研究验证,Onko_DrugCombScreen已证明其在识别特定癌症类型的既定药物组合和揭示潜在的新药物组合方面的能力。Onko_DrugCombScreen通过药物知识库增强药物组合发现的能力,通过识别有希望的药物组合,代表了个性化癌症治疗的重大进步,为癌症护理中更精确和有效的联合治疗的发展奠定了基础。Onko_DrugCombScreen Shiny应用程序可在https://rshiny.gwdg.de/apps/onko_drugcombscreen/上获得。可以通过https://gitlab.gwdg.de/MedBioinf/mtb/onko_drugcombscreen访问Git存储库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing personalized cancer therapy: Onko_DrugCombScreen-a novel Shiny app for precision drug combination screening.

Identifying and validating genotype-guided drug combinations for a specific molecular subtype in cancer therapy represents an unmet medical need and is important in enhancing efficacy and reducing toxicity. However, the exponential increase in combinatorial possibilities constrains the ability to identify and validate effective drug combinations. In this context, we have developed Onko_DrugCombScreen, an innovative tool aiming at advancing precision medicine based on identifying significant drug combination candidates in a target cancer cohort compared to a comparison cohort. Onko_DrugCombScreen, inspired by the molecular tumor board process, synergizes drug knowledgebase analysis with various statistical methodologies and data visualization techniques to pinpoint drug combination candidates. Validated through a TCGA-BRCA case study, Onko_DrugCombScreen has demonstrated its proficiency in discerning established drug combinations in a specific cancer type and in revealing potential novel drug combinations. By enhancing the capability of drug combination discovery through drug knowledgebases, Onko_DrugCombScreen represents a significant advancement in personalized cancer treatment by identifying promising drug combinations, setting the stage for the development of more precise and potent combination treatments in cancer care. The Onko_DrugCombScreen Shiny app is available at https://rshiny.gwdg.de/apps/onko_drugcombscreen/. The Git repository can be accessed at https://gitlab.gwdg.de/MedBioinf/mtb/onko_drugcombscreen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信