紫外诱变与PPX1过表达相结合可协同促进工业酿酒酵母s -腺苷- l-蛋氨酸合成。

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhong-Ce Hu , Hong-Wei Dai , Bing-Qing Gu , Yuan-Shan Wang , Zhi-Qiang Liu , Yu-Guo Zheng
{"title":"紫外诱变与PPX1过表达相结合可协同促进工业酿酒酵母s -腺苷- l-蛋氨酸合成。","authors":"Zhong-Ce Hu ,&nbsp;Hong-Wei Dai ,&nbsp;Bing-Qing Gu ,&nbsp;Yuan-Shan Wang ,&nbsp;Zhi-Qiang Liu ,&nbsp;Yu-Guo Zheng","doi":"10.1016/j.enzmictec.2025.110591","DOIUrl":null,"url":null,"abstract":"<div><div>S-adenosyl-L-methionine (SAM) is the only injectable drug among the hepatoprotective and choleretic drugs, which has remarkable efficacy and is favored by hepatopaths. The demand for SAM is constantly increasing in clinical settings. Therefore, many efforts have been made to increase SAM biosynthesis from L-methionine and ATP in <em>Saccharomyces cerevisiae</em>. This study aimed to construct a stable and high-accumulating SAM industrial strain through successive ultraviolet irradiation (UV) mutations coupled with three resistant (ethionine, nystatin, and cordycepin, respectively) screening procedures and metabolic engineering strategies. Following multiple UV mutagenesis, a higher production mutant strain ZJT15–33 was successfully obtained. In addition, the recombinant strain <em>spe2△-PPX1</em> was derived from ZJT15–33 by deleting the <em>SPE2</em> and overexpressing the <em>PPX1</em>, resulting in a 2.5-fold enhanced ATP accumulation, which promoted the synthesis of 2.41 g/L SAM in the shake-flask, representing an 11.4-fold enhancement over the original strain (0.21 g/L). Furthermore, 11.65 g/L SAM was accumulated with 113 mg/g DCW SAM content in a 5-L fermenter at 96 h, marking a 36.57 % increase compared to strain ZJT15–33 (8.53 g/L). These results indicated that UV mutagenesis combined with <em>PPX1</em> overexpression could effectively improve SAM synthesis in <em>S. cerevisiae</em>, providing a feasible approach for developing highly SAM industrial production.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"185 ","pages":"Article 110591"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The combination of ultraviolet mutagenesis and PPX1 overexpression synergistically enhanced S-adenosyl-L-methionine synthesis in industrial Saccharomyces cerevisiae\",\"authors\":\"Zhong-Ce Hu ,&nbsp;Hong-Wei Dai ,&nbsp;Bing-Qing Gu ,&nbsp;Yuan-Shan Wang ,&nbsp;Zhi-Qiang Liu ,&nbsp;Yu-Guo Zheng\",\"doi\":\"10.1016/j.enzmictec.2025.110591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>S-adenosyl-L-methionine (SAM) is the only injectable drug among the hepatoprotective and choleretic drugs, which has remarkable efficacy and is favored by hepatopaths. The demand for SAM is constantly increasing in clinical settings. Therefore, many efforts have been made to increase SAM biosynthesis from L-methionine and ATP in <em>Saccharomyces cerevisiae</em>. This study aimed to construct a stable and high-accumulating SAM industrial strain through successive ultraviolet irradiation (UV) mutations coupled with three resistant (ethionine, nystatin, and cordycepin, respectively) screening procedures and metabolic engineering strategies. Following multiple UV mutagenesis, a higher production mutant strain ZJT15–33 was successfully obtained. In addition, the recombinant strain <em>spe2△-PPX1</em> was derived from ZJT15–33 by deleting the <em>SPE2</em> and overexpressing the <em>PPX1</em>, resulting in a 2.5-fold enhanced ATP accumulation, which promoted the synthesis of 2.41 g/L SAM in the shake-flask, representing an 11.4-fold enhancement over the original strain (0.21 g/L). Furthermore, 11.65 g/L SAM was accumulated with 113 mg/g DCW SAM content in a 5-L fermenter at 96 h, marking a 36.57 % increase compared to strain ZJT15–33 (8.53 g/L). These results indicated that UV mutagenesis combined with <em>PPX1</em> overexpression could effectively improve SAM synthesis in <em>S. cerevisiae</em>, providing a feasible approach for developing highly SAM industrial production.</div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"185 \",\"pages\":\"Article 110591\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925000110\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000110","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

s -腺苷- l-蛋氨酸(SAM)是保肝降胆药物中唯一可注射的药物,疗效显著,受到肝病患者的青睐。临床环境对SAM的需求不断增加。因此,在酿酒酵母中增加l -蛋氨酸和ATP对SAM的生物合成进行了许多努力。本研究旨在通过连续紫外照射(UV)突变,结合三种抗性(分别为乙硫氨酸、制霉菌素和虫草素)的筛选程序和代谢工程策略,构建一株稳定、高积累的SAM工业菌株。经过多次紫外诱变,成功获得高产突变菌株ZJT15-33。此外,从ZJT15-33中删除spe2,过表达PPX1,获得重组菌株spe2△-PPX1,导致ATP积累增加2.5倍,在摇瓶中促进了2.41 g/L SAM的合成,比原菌株(0.21 g/L)增加11.4倍。在5-L发酵罐中,96 h时,SAM积累量为11.65 g/L, DCW SAM含量为113 mg/g,比菌株ZJT15-33(8.53 g/L)增加36.57 %。上述结果表明,紫外诱变联合PPX1过表达可有效提高酿酒酵母SAM的合成,为实现SAM的高含量产业化提供了可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The combination of ultraviolet mutagenesis and PPX1 overexpression synergistically enhanced S-adenosyl-L-methionine synthesis in industrial Saccharomyces cerevisiae
S-adenosyl-L-methionine (SAM) is the only injectable drug among the hepatoprotective and choleretic drugs, which has remarkable efficacy and is favored by hepatopaths. The demand for SAM is constantly increasing in clinical settings. Therefore, many efforts have been made to increase SAM biosynthesis from L-methionine and ATP in Saccharomyces cerevisiae. This study aimed to construct a stable and high-accumulating SAM industrial strain through successive ultraviolet irradiation (UV) mutations coupled with three resistant (ethionine, nystatin, and cordycepin, respectively) screening procedures and metabolic engineering strategies. Following multiple UV mutagenesis, a higher production mutant strain ZJT15–33 was successfully obtained. In addition, the recombinant strain spe2△-PPX1 was derived from ZJT15–33 by deleting the SPE2 and overexpressing the PPX1, resulting in a 2.5-fold enhanced ATP accumulation, which promoted the synthesis of 2.41 g/L SAM in the shake-flask, representing an 11.4-fold enhancement over the original strain (0.21 g/L). Furthermore, 11.65 g/L SAM was accumulated with 113 mg/g DCW SAM content in a 5-L fermenter at 96 h, marking a 36.57 % increase compared to strain ZJT15–33 (8.53 g/L). These results indicated that UV mutagenesis combined with PPX1 overexpression could effectively improve SAM synthesis in S. cerevisiae, providing a feasible approach for developing highly SAM industrial production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信