变形Wigner矩阵的Loschmidt回波。

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
László Erdős, Joscha Henheik, Oleksii Kolupaiev
{"title":"变形Wigner矩阵的Loschmidt回波。","authors":"László Erdős,&nbsp;Joscha Henheik,&nbsp;Oleksii Kolupaiev","doi":"10.1007/s11005-025-01904-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two Hamiltonians that are close to each other, <span>\\(H_1 \\approx H_2 \\)</span>, and analyze the time decay of the corresponding <i>Loschmidt echo</i> <span>\\(\\mathfrak {M}(t):= |\\langle \\psi _0, \\textrm{e}^{\\textrm{i} t H_2} \\textrm{e}^{-\\textrm{i} t H_1} \\psi _0 \\rangle |^2\\)</span> that expresses the effect of an imperfect time reversal on the initial state <span>\\(\\psi _0\\)</span>. Our model Hamiltonians are deformed Wigner matrices that do not share a common eigenbasis. The main tools are new two-resolvent laws for such <span>\\(H_1\\)</span> and <span>\\(H_2\\)</span>.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782466/pdf/","citationCount":"0","resultStr":"{\"title\":\"Loschmidt echo for deformed Wigner matrices\",\"authors\":\"László Erdős,&nbsp;Joscha Henheik,&nbsp;Oleksii Kolupaiev\",\"doi\":\"10.1007/s11005-025-01904-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider two Hamiltonians that are close to each other, <span>\\\\(H_1 \\\\approx H_2 \\\\)</span>, and analyze the time decay of the corresponding <i>Loschmidt echo</i> <span>\\\\(\\\\mathfrak {M}(t):= |\\\\langle \\\\psi _0, \\\\textrm{e}^{\\\\textrm{i} t H_2} \\\\textrm{e}^{-\\\\textrm{i} t H_1} \\\\psi _0 \\\\rangle |^2\\\\)</span> that expresses the effect of an imperfect time reversal on the initial state <span>\\\\(\\\\psi _0\\\\)</span>. Our model Hamiltonians are deformed Wigner matrices that do not share a common eigenbasis. The main tools are new two-resolvent laws for such <span>\\\\(H_1\\\\)</span> and <span>\\\\(H_2\\\\)</span>.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01904-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01904-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑两个彼此接近的哈密顿量,H 1≈H 2,并分析相应的洛施密特回波M (t)的时间衰减:= |⟨ψ 0, e it H 2 e - i i H 1 ψ 0⟩| 2,它表示不完全时间反转对初始状态ψ 0的影响。我们的模型哈密顿矩阵是不具有共同特征基的变形维格纳矩阵。主要的工具是关于h1和h2的新的双分解定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loschmidt echo for deformed Wigner matrices

We consider two Hamiltonians that are close to each other, \(H_1 \approx H_2 \), and analyze the time decay of the corresponding Loschmidt echo \(\mathfrak {M}(t):= |\langle \psi _0, \textrm{e}^{\textrm{i} t H_2} \textrm{e}^{-\textrm{i} t H_1} \psi _0 \rangle |^2\) that expresses the effect of an imperfect time reversal on the initial state \(\psi _0\). Our model Hamiltonians are deformed Wigner matrices that do not share a common eigenbasis. The main tools are new two-resolvent laws for such \(H_1\) and \(H_2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信