{"title":"通过非负矩阵分解揭示食物对农药残留的耐受模式。","authors":"Suyu Mei","doi":"10.1111/1750-3841.70029","DOIUrl":null,"url":null,"abstract":"<p>Gaining knowledge about the maximum residue limits (MALs) of pesticides on fresh or processed foods is critical to the process of pre-harvest cultivation, post-harvest processing and storage, and the downstream safety surveillance of food commodities. In this study, we explore the available MALs of 643 pesticides on 128 foods via non-negative matrix factorization (NMF) and hierarchical clustering to gain insights into the patterns of how similar pesticides exhibit similar MALs profiles on foods. Meanwhile, NMF predicts the MALs for untested foods via the implicitly-learnt patterns without conducting in vivo testing that potentially violates ethic regulations. Clustering results show that foods with closer NMF weights commonly exhibit closer residue tolerance profiles, and pesticides with closer MALs profiles exhibit higher structural similarities. These patterns help food experts to assess the MALs of pesticides concerned on untested foods, and the determination of MRLs on foods has its mechanistic basis. Using the reverse process of NMF decomposition, we provide the predicted MALs for 24.31% pesticide-food pairs, and NMF achieves 0.9 <i>R</i><sup>2</sup> on more than 75.78% foods in terms of recreating the experimental MALs values. Only 8.6% foods achieve less than 0.7 <i>R</i><sup>2</sup>. These predicted MALs are supposed to provide practical or theoretical reference to benefit the surveillance of pesticide applications and food safety control.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling patterns of food tolerance to pesticide residues via non-negative matrix factorization\",\"authors\":\"Suyu Mei\",\"doi\":\"10.1111/1750-3841.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gaining knowledge about the maximum residue limits (MALs) of pesticides on fresh or processed foods is critical to the process of pre-harvest cultivation, post-harvest processing and storage, and the downstream safety surveillance of food commodities. In this study, we explore the available MALs of 643 pesticides on 128 foods via non-negative matrix factorization (NMF) and hierarchical clustering to gain insights into the patterns of how similar pesticides exhibit similar MALs profiles on foods. Meanwhile, NMF predicts the MALs for untested foods via the implicitly-learnt patterns without conducting in vivo testing that potentially violates ethic regulations. Clustering results show that foods with closer NMF weights commonly exhibit closer residue tolerance profiles, and pesticides with closer MALs profiles exhibit higher structural similarities. These patterns help food experts to assess the MALs of pesticides concerned on untested foods, and the determination of MRLs on foods has its mechanistic basis. Using the reverse process of NMF decomposition, we provide the predicted MALs for 24.31% pesticide-food pairs, and NMF achieves 0.9 <i>R</i><sup>2</sup> on more than 75.78% foods in terms of recreating the experimental MALs values. Only 8.6% foods achieve less than 0.7 <i>R</i><sup>2</sup>. These predicted MALs are supposed to provide practical or theoretical reference to benefit the surveillance of pesticide applications and food safety control.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\"90 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70029\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70029","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Unravelling patterns of food tolerance to pesticide residues via non-negative matrix factorization
Gaining knowledge about the maximum residue limits (MALs) of pesticides on fresh or processed foods is critical to the process of pre-harvest cultivation, post-harvest processing and storage, and the downstream safety surveillance of food commodities. In this study, we explore the available MALs of 643 pesticides on 128 foods via non-negative matrix factorization (NMF) and hierarchical clustering to gain insights into the patterns of how similar pesticides exhibit similar MALs profiles on foods. Meanwhile, NMF predicts the MALs for untested foods via the implicitly-learnt patterns without conducting in vivo testing that potentially violates ethic regulations. Clustering results show that foods with closer NMF weights commonly exhibit closer residue tolerance profiles, and pesticides with closer MALs profiles exhibit higher structural similarities. These patterns help food experts to assess the MALs of pesticides concerned on untested foods, and the determination of MRLs on foods has its mechanistic basis. Using the reverse process of NMF decomposition, we provide the predicted MALs for 24.31% pesticide-food pairs, and NMF achieves 0.9 R2 on more than 75.78% foods in terms of recreating the experimental MALs values. Only 8.6% foods achieve less than 0.7 R2. These predicted MALs are supposed to provide practical or theoretical reference to benefit the surveillance of pesticide applications and food safety control.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.