最小同调维的不变子变,零Lyapunov指数,和单态

IF 2.4 1区 数学 Q1 MATHEMATICS
Paul Apisa
{"title":"最小同调维的不变子变,零Lyapunov指数,和单态","authors":"Paul Apisa","doi":"10.1007/s00039-025-00700-6","DOIUrl":null,"url":null,"abstract":"<p>We classify the <span>\\(\\mathrm{GL}(2,\\mathbb{R})\\)</span>-invariant subvarieties <span>\\(\\mathcal{M}\\)</span> in strata of Abelian differentials for which any two <span>\\(\\mathcal{M}\\)</span>-parallel cylinders have homologous core curves. As a corollary we show that outside of an explicit list of exceptions, if <span>\\(\\mathcal{M}\\)</span> is a <span>\\(\\mathrm{GL}(2,\\mathbb{R})\\)</span>-invariant subvariety, then the Kontsevich-Zorich cocycle has nonzero Lyapunov exponents in the symplectic orthogonal of the projection of the tangent bundle of <span>\\(\\mathcal{M}\\)</span> to absolute cohomology.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"22 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant Subvarieties of Minimal Homological Dimension, Zero Lyapunov Exponents, and Monodromy\",\"authors\":\"Paul Apisa\",\"doi\":\"10.1007/s00039-025-00700-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We classify the <span>\\\\(\\\\mathrm{GL}(2,\\\\mathbb{R})\\\\)</span>-invariant subvarieties <span>\\\\(\\\\mathcal{M}\\\\)</span> in strata of Abelian differentials for which any two <span>\\\\(\\\\mathcal{M}\\\\)</span>-parallel cylinders have homologous core curves. As a corollary we show that outside of an explicit list of exceptions, if <span>\\\\(\\\\mathcal{M}\\\\)</span> is a <span>\\\\(\\\\mathrm{GL}(2,\\\\mathbb{R})\\\\)</span>-invariant subvariety, then the Kontsevich-Zorich cocycle has nonzero Lyapunov exponents in the symplectic orthogonal of the projection of the tangent bundle of <span>\\\\(\\\\mathcal{M}\\\\)</span> to absolute cohomology.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00700-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00700-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对任意两个\(\mathcal{M}\) -平行柱体具有同源岩心曲线的阿贝尔微分地层中的\(\mathrm{GL}(2,\mathbb{R})\) -不变子变种\(\mathcal{M}\)进行了分类。作为一个推论,我们证明了在一个显式的例外列表之外,如果\(\mathcal{M}\)是一个\(\mathrm{GL}(2,\mathbb{R})\)不变子变量,那么kontsevic - zorich环在\(\mathcal{M}\)的切束到绝对上同的投影的辛正交上具有非零Lyapunov指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant Subvarieties of Minimal Homological Dimension, Zero Lyapunov Exponents, and Monodromy

We classify the \(\mathrm{GL}(2,\mathbb{R})\)-invariant subvarieties \(\mathcal{M}\) in strata of Abelian differentials for which any two \(\mathcal{M}\)-parallel cylinders have homologous core curves. As a corollary we show that outside of an explicit list of exceptions, if \(\mathcal{M}\) is a \(\mathrm{GL}(2,\mathbb{R})\)-invariant subvariety, then the Kontsevich-Zorich cocycle has nonzero Lyapunov exponents in the symplectic orthogonal of the projection of the tangent bundle of \(\mathcal{M}\) to absolute cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信