多基因风险评分法校正回归衰减偏差的贝叶斯方法。

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-04-17 DOI:10.1093/genetics/iyaf018
Geyu Zhou, Xinyue Qie, Hongyu Zhao
{"title":"多基因风险评分法校正回归衰减偏差的贝叶斯方法。","authors":"Geyu Zhou, Xinyue Qie, Hongyu Zhao","doi":"10.1093/genetics/iyaf018","DOIUrl":null,"url":null,"abstract":"<p><p>Polygenic risk score has become increasingly popular for predicting the value of complex traits. In many settings, polygenic risk score is used as a covariate in regression analysis to study the association between different phenotypes. However, measurement error in polygenic risk score causes attenuation bias in the estimation of regression coefficients. In this paper, we employ a Bayesian approach to accounting for the measurement error of polygenic risk score and correcting the attenuation bias in linear and logistic regression. Through simulation, we show that our approach is able to obtain approximately unbiased estimation of coefficients and credible intervals with correct coverage probability. We also empirically compare our Bayesian measurement error model with the conventional regression model by analyzing real traits in the UK Biobank. The results demonstrate the effectiveness of our approach as it significantly reduces the error in coefficient estimates.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian approach to correcting the attenuation bias of regression using polygenic risk score.\",\"authors\":\"Geyu Zhou, Xinyue Qie, Hongyu Zhao\",\"doi\":\"10.1093/genetics/iyaf018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polygenic risk score has become increasingly popular for predicting the value of complex traits. In many settings, polygenic risk score is used as a covariate in regression analysis to study the association between different phenotypes. However, measurement error in polygenic risk score causes attenuation bias in the estimation of regression coefficients. In this paper, we employ a Bayesian approach to accounting for the measurement error of polygenic risk score and correcting the attenuation bias in linear and logistic regression. Through simulation, we show that our approach is able to obtain approximately unbiased estimation of coefficients and credible intervals with correct coverage probability. We also empirically compare our Bayesian measurement error model with the conventional regression model by analyzing real traits in the UK Biobank. The results demonstrate the effectiveness of our approach as it significantly reduces the error in coefficient estimates.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf018\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

多基因风险评分(PRS)在预测复杂性状价值方面越来越受欢迎。在许多情况下,PRS被用作回归分析中的协变量,以研究不同表型之间的关联。然而,PRS的测量误差会导致回归系数估计中的衰减偏差。在本文中,我们采用贝叶斯方法来计算PRS的测量误差,并纠正线性和逻辑回归中的衰减偏差。仿真结果表明,该方法能够获得具有正确覆盖概率的系数和可信区间的近似无偏估计。我们还通过分析英国生物银行的真实性状,将贝叶斯测量误差模型与传统回归模型进行了实证比较。结果证明了我们的方法的有效性,因为它显著降低了系数估计的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian approach to correcting the attenuation bias of regression using polygenic risk score.

Polygenic risk score has become increasingly popular for predicting the value of complex traits. In many settings, polygenic risk score is used as a covariate in regression analysis to study the association between different phenotypes. However, measurement error in polygenic risk score causes attenuation bias in the estimation of regression coefficients. In this paper, we employ a Bayesian approach to accounting for the measurement error of polygenic risk score and correcting the attenuation bias in linear and logistic regression. Through simulation, we show that our approach is able to obtain approximately unbiased estimation of coefficients and credible intervals with correct coverage probability. We also empirically compare our Bayesian measurement error model with the conventional regression model by analyzing real traits in the UK Biobank. The results demonstrate the effectiveness of our approach as it significantly reduces the error in coefficient estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信