{"title":"CRMP2磷酸化参与淀粉样蛋白β诱导的阿尔茨海默病小鼠模型海马神经元Tau磷酸化","authors":"Daisuke Noguchi, Naoto Watamura, Miyu Nikkuni, Takaomi C Saido, Yoshio Goshima, Toshio Ohshima","doi":"10.1007/s12035-025-04721-y","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common form of dementia, characterized by amyloid-β (Aβ) deposition and the formation of neurofibrillary tangles composed of hyperphosphorylated tau. Collapsin response mediator protein 2 (CRMP2), a microtubule (MT)-binding protein, regulates MT dynamics and is phosphorylated at Ser522 by cyclin-dependent kinase 5. Previous studies have shown increased CRMP2 phosphorylation at Ser522 (CRMP2-pSer522) in early AD stages and AD mouse models, where it colocalizes with phosphorylated tau. However, the role of CRMP-pSer522 in AD pathology remains unclear. In this study, we generated double transgenic mice by crossing tau Tg (PS19) mice and CRMP2 S522A knock-in (CRMP2KI) mice, in which S522 of CRMP2 was replaced with alanine to create a phospho-defective model. No significant change in tau phosphorylation was observed in the hippocampus of tau Tg; CRMP2KI mice compared to tau Tg littermates. However, when Aβ25-35 oligomers were injected into the hippocampus, tau phosphorylation was significantly reduced in Aβ-injected tau Tg; CRMP2KI mice compared to Aβ-injected tau Tg controls. These findings suggest that CRMP2 phosphorylation at Ser522 promotes Aβ-induced tau phosphorylation in this mouse model of AD.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7413-7420"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Involvement of CRMP2 Phosphorylation in Amyloid Beta-induced Tau Phosphorylation of Hippocampal Neurons in Alzheimer's Disease Mouse Model.\",\"authors\":\"Daisuke Noguchi, Naoto Watamura, Miyu Nikkuni, Takaomi C Saido, Yoshio Goshima, Toshio Ohshima\",\"doi\":\"10.1007/s12035-025-04721-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is the most common form of dementia, characterized by amyloid-β (Aβ) deposition and the formation of neurofibrillary tangles composed of hyperphosphorylated tau. Collapsin response mediator protein 2 (CRMP2), a microtubule (MT)-binding protein, regulates MT dynamics and is phosphorylated at Ser522 by cyclin-dependent kinase 5. Previous studies have shown increased CRMP2 phosphorylation at Ser522 (CRMP2-pSer522) in early AD stages and AD mouse models, where it colocalizes with phosphorylated tau. However, the role of CRMP-pSer522 in AD pathology remains unclear. In this study, we generated double transgenic mice by crossing tau Tg (PS19) mice and CRMP2 S522A knock-in (CRMP2KI) mice, in which S522 of CRMP2 was replaced with alanine to create a phospho-defective model. No significant change in tau phosphorylation was observed in the hippocampus of tau Tg; CRMP2KI mice compared to tau Tg littermates. However, when Aβ25-35 oligomers were injected into the hippocampus, tau phosphorylation was significantly reduced in Aβ-injected tau Tg; CRMP2KI mice compared to Aβ-injected tau Tg controls. These findings suggest that CRMP2 phosphorylation at Ser522 promotes Aβ-induced tau phosphorylation in this mouse model of AD.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"7413-7420\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04721-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04721-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Involvement of CRMP2 Phosphorylation in Amyloid Beta-induced Tau Phosphorylation of Hippocampal Neurons in Alzheimer's Disease Mouse Model.
Alzheimer's disease (AD) is the most common form of dementia, characterized by amyloid-β (Aβ) deposition and the formation of neurofibrillary tangles composed of hyperphosphorylated tau. Collapsin response mediator protein 2 (CRMP2), a microtubule (MT)-binding protein, regulates MT dynamics and is phosphorylated at Ser522 by cyclin-dependent kinase 5. Previous studies have shown increased CRMP2 phosphorylation at Ser522 (CRMP2-pSer522) in early AD stages and AD mouse models, where it colocalizes with phosphorylated tau. However, the role of CRMP-pSer522 in AD pathology remains unclear. In this study, we generated double transgenic mice by crossing tau Tg (PS19) mice and CRMP2 S522A knock-in (CRMP2KI) mice, in which S522 of CRMP2 was replaced with alanine to create a phospho-defective model. No significant change in tau phosphorylation was observed in the hippocampus of tau Tg; CRMP2KI mice compared to tau Tg littermates. However, when Aβ25-35 oligomers were injected into the hippocampus, tau phosphorylation was significantly reduced in Aβ-injected tau Tg; CRMP2KI mice compared to Aβ-injected tau Tg controls. These findings suggest that CRMP2 phosphorylation at Ser522 promotes Aβ-induced tau phosphorylation in this mouse model of AD.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.