Shuchang Peng, Chenglin Li, Yanwen He, Lei Xue, Xiaowei Guo
{"title":"Regulatory roles of RNA binding proteins in the Hippo pathway.","authors":"Shuchang Peng, Chenglin Li, Yanwen He, Lei Xue, Xiaowei Guo","doi":"10.1038/s41420-025-02316-z","DOIUrl":null,"url":null,"abstract":"<p><p>The Hippo pathway represents a highly conserved evolutionary pathway, dysfunction of which has been implicated in various diseases. RNA-binding proteins (RBPs) intricately modulate gene expression through interacting with non-coding RNAs or other proteins. To data, while an array of RBPs have been identified as modulators of the Hippo pathway, there remains a notable absence of a comprehensive review addressing the mechanistic regulations of RBPs in the transduction of Hippo signaling. Herein, this review aims to consolidate recent advances and elucidate the intricate mechanisms underlying RBPs binding to target RNA. It also explores the dynamic interplay between RBPs, non-coding RNAs, TFs, and DNA on chromatin. Additionally, it also outlines future perspectives, including the essential non-canonical functions of RBPs and emerging roles of non-canonical RBPs as transcription factors (TFs) in genes transcription. Overall, this review provides mechanistic insights into the roles of eukaryotic RBP proteins in the regulation of crucial signaling cascades.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"36"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02316-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Regulatory roles of RNA binding proteins in the Hippo pathway.
The Hippo pathway represents a highly conserved evolutionary pathway, dysfunction of which has been implicated in various diseases. RNA-binding proteins (RBPs) intricately modulate gene expression through interacting with non-coding RNAs or other proteins. To data, while an array of RBPs have been identified as modulators of the Hippo pathway, there remains a notable absence of a comprehensive review addressing the mechanistic regulations of RBPs in the transduction of Hippo signaling. Herein, this review aims to consolidate recent advances and elucidate the intricate mechanisms underlying RBPs binding to target RNA. It also explores the dynamic interplay between RBPs, non-coding RNAs, TFs, and DNA on chromatin. Additionally, it also outlines future perspectives, including the essential non-canonical functions of RBPs and emerging roles of non-canonical RBPs as transcription factors (TFs) in genes transcription. Overall, this review provides mechanistic insights into the roles of eukaryotic RBP proteins in the regulation of crucial signaling cascades.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.