多组学分析确定了阿尔茨海默病连续体中的肠道微生物-粪便代谢物-大脑认知途径。

IF 7.9 1区 医学 Q1 CLINICAL NEUROLOGY
Han Zhao, Xia Zhou, Yu Song, Wenming Zhao, Zhongwu Sun, Jiajia Zhu, Yongqiang Yu
{"title":"多组学分析确定了阿尔茨海默病连续体中的肠道微生物-粪便代谢物-大脑认知途径。","authors":"Han Zhao, Xia Zhou, Yu Song, Wenming Zhao, Zhongwu Sun, Jiajia Zhu, Yongqiang Yu","doi":"10.1186/s13195-025-01683-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gut microbiota dysbiosis is linked to Alzheimer's disease (AD), but our understanding of the molecular and neuropathological bases underlying such association remains fragmentary.</p><p><strong>Methods: </strong>Using 16S rDNA amplicon sequencing, untargeted metabolomics, and multi-modal magnetic resonance imaging, we examined group differences in gut microbiome, fecal metabolome, neuroimaging measures, and cognitive variables across 30 patients with AD, 75 individuals with mild cognitive impairment (MCI), and 61 healthy controls (HC). Furthermore, we assessed the associations between these multi-omics changes using correlation and mediation analyses.</p><p><strong>Results: </strong>There were significant group differences in gut microbial composition, which were driven by 8 microbial taxa (e.g., Staphylococcus and Bacillus) exhibiting a progressive increase in relative abundance from HC to MCI to AD, and 2 taxa (e.g., Anaerostipes) showing a gradual decrease. 26 fecal metabolites (e.g., Arachidonic, Adrenic, and Lithocholic acids) exhibited a progressive increase from HC to MCI to AD. We also observed progressive gray matter atrophy in broadly distributed gray matter regions and gradual micro-structural integrity damage in widespread white matter tracts along the AD continuum. Integration of these multi-omics changes revealed significant associations between microbiota, metabolites, neuroimaging, and cognition. More importantly, we identified two potential mediation pathways: (1) microbiota → metabolites → neuroimaging → cognition, and (2) microbiota → metabolites → cognition.</p><p><strong>Conclusion: </strong>Aside from elucidating the underlying mechanism whereby gut microbiota dysbiosis is linked to AD, our findings may contribute to groundwork for future interventions targeting the microbiota-metabolites-brain-cognition pathways as a therapeutic strategy in the AD continuum.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"17 1","pages":"36"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786436/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-omics analyses identify gut microbiota-fecal metabolites-brain-cognition pathways in the Alzheimer's disease continuum.\",\"authors\":\"Han Zhao, Xia Zhou, Yu Song, Wenming Zhao, Zhongwu Sun, Jiajia Zhu, Yongqiang Yu\",\"doi\":\"10.1186/s13195-025-01683-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gut microbiota dysbiosis is linked to Alzheimer's disease (AD), but our understanding of the molecular and neuropathological bases underlying such association remains fragmentary.</p><p><strong>Methods: </strong>Using 16S rDNA amplicon sequencing, untargeted metabolomics, and multi-modal magnetic resonance imaging, we examined group differences in gut microbiome, fecal metabolome, neuroimaging measures, and cognitive variables across 30 patients with AD, 75 individuals with mild cognitive impairment (MCI), and 61 healthy controls (HC). Furthermore, we assessed the associations between these multi-omics changes using correlation and mediation analyses.</p><p><strong>Results: </strong>There were significant group differences in gut microbial composition, which were driven by 8 microbial taxa (e.g., Staphylococcus and Bacillus) exhibiting a progressive increase in relative abundance from HC to MCI to AD, and 2 taxa (e.g., Anaerostipes) showing a gradual decrease. 26 fecal metabolites (e.g., Arachidonic, Adrenic, and Lithocholic acids) exhibited a progressive increase from HC to MCI to AD. We also observed progressive gray matter atrophy in broadly distributed gray matter regions and gradual micro-structural integrity damage in widespread white matter tracts along the AD continuum. Integration of these multi-omics changes revealed significant associations between microbiota, metabolites, neuroimaging, and cognition. More importantly, we identified two potential mediation pathways: (1) microbiota → metabolites → neuroimaging → cognition, and (2) microbiota → metabolites → cognition.</p><p><strong>Conclusion: </strong>Aside from elucidating the underlying mechanism whereby gut microbiota dysbiosis is linked to AD, our findings may contribute to groundwork for future interventions targeting the microbiota-metabolites-brain-cognition pathways as a therapeutic strategy in the AD continuum.</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":\"17 1\",\"pages\":\"36\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-025-01683-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-025-01683-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肠道菌群失调与阿尔茨海默病(AD)有关,但我们对这种关联背后的分子和神经病理基础的理解仍然不完整。方法:采用16S rDNA扩增子测序、非靶向代谢组学和多模态磁共振成像技术,研究了30名AD患者、75名轻度认知障碍(MCI)患者和61名健康对照(HC)患者肠道微生物组、粪便代谢组、神经影像学指标和认知变量的组间差异。此外,我们使用相关性和中介分析评估了这些多组学变化之间的关联。结果:肠道微生物组成存在显著的组间差异,8个微生物类群(如葡萄球菌和芽孢杆菌)从HC到MCI再到AD的相对丰度呈渐进式增加,2个类群(如厌氧菌)的相对丰度呈逐渐减少。26种粪便代谢物(如花生四烯酸、肾上腺素酸和石胆酸)表现出从HC到MCI到AD的渐进式增加。我们还观察到在广泛分布的灰质区域进行性灰质萎缩,并在AD连续体中广泛分布的白质束中逐渐出现微结构完整性损伤。这些多组学变化的整合揭示了微生物群、代谢物、神经影像学和认知之间的显著关联。更重要的是,我们确定了两种潜在的介导途径:(1)微生物群→代谢物→神经成像→认知;(2)微生物群→代谢物→认知。结论:除了阐明肠道微生物群失调与阿尔茨海默病相关的潜在机制外,我们的发现可能为未来针对微生物群-代谢物-大脑认知途径的干预奠定基础,作为阿尔茨海默病连续体的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-omics analyses identify gut microbiota-fecal metabolites-brain-cognition pathways in the Alzheimer's disease continuum.

Background: Gut microbiota dysbiosis is linked to Alzheimer's disease (AD), but our understanding of the molecular and neuropathological bases underlying such association remains fragmentary.

Methods: Using 16S rDNA amplicon sequencing, untargeted metabolomics, and multi-modal magnetic resonance imaging, we examined group differences in gut microbiome, fecal metabolome, neuroimaging measures, and cognitive variables across 30 patients with AD, 75 individuals with mild cognitive impairment (MCI), and 61 healthy controls (HC). Furthermore, we assessed the associations between these multi-omics changes using correlation and mediation analyses.

Results: There were significant group differences in gut microbial composition, which were driven by 8 microbial taxa (e.g., Staphylococcus and Bacillus) exhibiting a progressive increase in relative abundance from HC to MCI to AD, and 2 taxa (e.g., Anaerostipes) showing a gradual decrease. 26 fecal metabolites (e.g., Arachidonic, Adrenic, and Lithocholic acids) exhibited a progressive increase from HC to MCI to AD. We also observed progressive gray matter atrophy in broadly distributed gray matter regions and gradual micro-structural integrity damage in widespread white matter tracts along the AD continuum. Integration of these multi-omics changes revealed significant associations between microbiota, metabolites, neuroimaging, and cognition. More importantly, we identified two potential mediation pathways: (1) microbiota → metabolites → neuroimaging → cognition, and (2) microbiota → metabolites → cognition.

Conclusion: Aside from elucidating the underlying mechanism whereby gut microbiota dysbiosis is linked to AD, our findings may contribute to groundwork for future interventions targeting the microbiota-metabolites-brain-cognition pathways as a therapeutic strategy in the AD continuum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Alzheimer's Research & Therapy
Alzheimer's Research & Therapy 医学-神经病学
CiteScore
13.10
自引率
3.30%
发文量
172
审稿时长
>12 weeks
期刊介绍: Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信