{"title":"通过兆电子伏观测探究耀星喷流的低能粒子含量","authors":"F. Tavecchio, L. Nava, A. Sciaccaluga, P. Coppi","doi":"10.1051/0004-6361/202453411","DOIUrl":null,"url":null,"abstract":"Many of the blazars observed by <i>Fermi<i/> actually have the peak of their time-averaged gamma-ray emission outside the ∼GeV <i>Fermi<i/> energy range, at ∼MeV energies. The detailed shape of the emission spectrum around the ∼MeV peak places important constraints on acceleration and radiation mechanisms in the blazar jet and may not be the simple broken power law obtained by extrapolating from the observed X-ray and GeV gamma-ray spectra. In particular, state-of-the-art simulations of particle acceleration by shocks show that a significant fraction (possibly up to ≈90%) of the available energy may go into bulk quasi-thermal heating of the plasma crossing the shock rather than producing a nonthermal power-law tail. Other gentler but possibly more pervasive acceleration mechanisms, such as shear acceleration at the jet boundary, may result in a further build-up of the low-energy (<i>γ<i/> ≲ 10<sup>2<sup/>) particle population in the jet. As already discussed for the case of gamma-ray bursts, the presence of a low-energy Maxwellian-like bump in the jet particle energy distribution can strongly affect the spectrum of the emitted radiation, for example producing an excess over the emission expected from a power-law extrapolation of a blazar’s GeV-TeV spectrum. We explore the potential detectability of the spectral component ascribable to a hot quasi-thermal population of electrons in the high-energy emission of flat-spectrum radio quasars (FSRQs). We show that for the typical physical parameters of FSRQs, the expected spectral signature is located at ∼MeV energies. For the brightest <i>Fermi<i/> FSRQ sources, the presence of such a component will be constrained by the upcoming MeV Compton Spectrometer and Imager (COSI) satellite.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"128 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the low-energy particle content of blazar jets through MeV observations\",\"authors\":\"F. Tavecchio, L. Nava, A. Sciaccaluga, P. Coppi\",\"doi\":\"10.1051/0004-6361/202453411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the blazars observed by <i>Fermi<i/> actually have the peak of their time-averaged gamma-ray emission outside the ∼GeV <i>Fermi<i/> energy range, at ∼MeV energies. The detailed shape of the emission spectrum around the ∼MeV peak places important constraints on acceleration and radiation mechanisms in the blazar jet and may not be the simple broken power law obtained by extrapolating from the observed X-ray and GeV gamma-ray spectra. In particular, state-of-the-art simulations of particle acceleration by shocks show that a significant fraction (possibly up to ≈90%) of the available energy may go into bulk quasi-thermal heating of the plasma crossing the shock rather than producing a nonthermal power-law tail. Other gentler but possibly more pervasive acceleration mechanisms, such as shear acceleration at the jet boundary, may result in a further build-up of the low-energy (<i>γ<i/> ≲ 10<sup>2<sup/>) particle population in the jet. As already discussed for the case of gamma-ray bursts, the presence of a low-energy Maxwellian-like bump in the jet particle energy distribution can strongly affect the spectrum of the emitted radiation, for example producing an excess over the emission expected from a power-law extrapolation of a blazar’s GeV-TeV spectrum. We explore the potential detectability of the spectral component ascribable to a hot quasi-thermal population of electrons in the high-energy emission of flat-spectrum radio quasars (FSRQs). We show that for the typical physical parameters of FSRQs, the expected spectral signature is located at ∼MeV energies. For the brightest <i>Fermi<i/> FSRQ sources, the presence of such a component will be constrained by the upcoming MeV Compton Spectrometer and Imager (COSI) satellite.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202453411\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202453411","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Probing the low-energy particle content of blazar jets through MeV observations
Many of the blazars observed by Fermi actually have the peak of their time-averaged gamma-ray emission outside the ∼GeV Fermi energy range, at ∼MeV energies. The detailed shape of the emission spectrum around the ∼MeV peak places important constraints on acceleration and radiation mechanisms in the blazar jet and may not be the simple broken power law obtained by extrapolating from the observed X-ray and GeV gamma-ray spectra. In particular, state-of-the-art simulations of particle acceleration by shocks show that a significant fraction (possibly up to ≈90%) of the available energy may go into bulk quasi-thermal heating of the plasma crossing the shock rather than producing a nonthermal power-law tail. Other gentler but possibly more pervasive acceleration mechanisms, such as shear acceleration at the jet boundary, may result in a further build-up of the low-energy (γ ≲ 102) particle population in the jet. As already discussed for the case of gamma-ray bursts, the presence of a low-energy Maxwellian-like bump in the jet particle energy distribution can strongly affect the spectrum of the emitted radiation, for example producing an excess over the emission expected from a power-law extrapolation of a blazar’s GeV-TeV spectrum. We explore the potential detectability of the spectral component ascribable to a hot quasi-thermal population of electrons in the high-energy emission of flat-spectrum radio quasars (FSRQs). We show that for the typical physical parameters of FSRQs, the expected spectral signature is located at ∼MeV energies. For the brightest Fermi FSRQ sources, the presence of such a component will be constrained by the upcoming MeV Compton Spectrometer and Imager (COSI) satellite.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.