基于分数的扩散模型与自监督学习加速三维多对比心脏MR成像

Yuanyuan Liu;Zhuo-Xu Cui;Shucong Qin;Congcong Liu;Hairong Zheng;Haifeng Wang;Yihang Zhou;Dong Liang;Yanjie Zhu
{"title":"基于分数的扩散模型与自监督学习加速三维多对比心脏MR成像","authors":"Yuanyuan Liu;Zhuo-Xu Cui;Shucong Qin;Congcong Liu;Hairong Zheng;Haifeng Wang;Yihang Zhou;Dong Liang;Yanjie Zhu","doi":"10.1109/TMI.2025.3534206","DOIUrl":null,"url":null,"abstract":"Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial <inline-formula> <tex-math>$ \\text {T}_{{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$ \\text {T}_{{1}\\rho }$ </tex-math></inline-formula> mapping sequence. The <inline-formula> <tex-math>$ \\text {T}_{{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$ \\text {T}_{{1}\\rho }$ </tex-math></inline-formula> maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality <inline-formula> <tex-math>$ \\text {T}_{{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$ \\text {T}_{{1}\\rho }$ </tex-math></inline-formula> parametric maps close to the reference maps, even at a high acceleration rate of 14.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 6","pages":"2436-2448"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Score-Based Diffusion Models With Self-Supervised Learning for Accelerated 3D Multi-Contrast Cardiac MR Imaging\",\"authors\":\"Yuanyuan Liu;Zhuo-Xu Cui;Shucong Qin;Congcong Liu;Hairong Zheng;Haifeng Wang;Yihang Zhou;Dong Liang;Yanjie Zhu\",\"doi\":\"10.1109/TMI.2025.3534206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial <inline-formula> <tex-math>$ \\\\text {T}_{{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$ \\\\text {T}_{{1}\\\\rho }$ </tex-math></inline-formula> mapping sequence. The <inline-formula> <tex-math>$ \\\\text {T}_{{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$ \\\\text {T}_{{1}\\\\rho }$ </tex-math></inline-formula> maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality <inline-formula> <tex-math>$ \\\\text {T}_{{1}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$ \\\\text {T}_{{1}\\\\rho }$ </tex-math></inline-formula> parametric maps close to the reference maps, even at a high acceleration rate of 14.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 6\",\"pages\":\"2436-2448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858080/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858080/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扫描时间过长严重阻碍了三维心脏磁共振(3D-MC-CMR)的广泛应用。本研究旨在通过一种基于分数扩散模型和自监督学习的新方法来加速3D-MC-CMR的获取。具体来说,我们首先利用自监督贝叶斯重建网络建立了欠采样k空间测量与MR图像之间的映射。其次,我们在3D-MC-CMR图像上建立了基于联合分数的扩散模型,以捕获其固有分布。最后利用条件朗根文马尔可夫链蒙特卡罗采样重建3D-MC-CMR图像。这种方法可以在没有完全采样训练数据的情况下实现准确的重建。在三维关节心肌$ \text {T}_{{1}}$和$ \text {T}_{{1}\rho}$映射序列获得的数据集上测试其性能。通过字典匹配的方法从重建图像中估计$ \text {T}_{{1}}$和$ \text {T}_{{1}\rho}$映射。实验结果表明,该方法优于传统的压缩感知和现有的自监督深度学习MRI重建方法。它还实现了高质量的$ \text {T}_{{1}}$和$ \text {T}_{{1}\rho}$参数映射,接近参考映射,即使在高加速率为14时也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Score-Based Diffusion Models With Self-Supervised Learning for Accelerated 3D Multi-Contrast Cardiac MR Imaging
Long scan time significantly hinders the widespread applications of three-dimensional multi-contrast cardiac magnetic resonance (3D-MC-CMR) imaging. This study aims to accelerate 3D-MC-CMR acquisition by a novel method based on score-based diffusion models with self-supervised learning. Specifically, we first establish a mapping between the undersampled k-space measurements and the MR images, utilizing a self-supervised Bayesian reconstruction network. Secondly, we develop a joint score-based diffusion model on 3D-MC-CMR images to capture their inherent distribution. The 3D-MC-CMR images are finally reconstructed using the conditioned Langenvin Markov chain Monte Carlo sampling. This approach enables accurate reconstruction without fully sampled training data. Its performance was tested on the dataset acquired by a 3D joint myocardial $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ mapping sequence. The $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ maps were estimated via a dictionary matching method from the reconstructed images. Experimental results show that the proposed method outperforms traditional compressed sensing and existing self-supervised deep learning MRI reconstruction methods. It also achieves high quality $ \text {T}_{{1}}$ and $ \text {T}_{{1}\rho }$ parametric maps close to the reference maps, even at a high acceleration rate of 14.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信