具有Sturm-Liouville型空间分数阶导数的度量星图上的时空分数抛物方程:分析与离散化

IF 2.5 2区 数学 Q1 MATHEMATICS
Vaibhav Mehandiratta, Mani Mehra
{"title":"具有Sturm-Liouville型空间分数阶导数的度量星图上的时空分数抛物方程:分析与离散化","authors":"Vaibhav Mehandiratta, Mani Mehra","doi":"10.1007/s13540-025-00376-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the well-posedness and discretization of the space-time fractional parabolic equations (STFPEs) of the Sturm-Liouville type on a metric star graph. The considered problem involves the fractional time derivative in the Caputo sense, and the spatial fractional derivative is of the Sturm-Liouville type consisting of the composition of the right-sided Caputo derivative and left-sided Riemann-Liouville fractional derivative. By introducing the appropriate function spaces for the involved fractional operators in both the time and spatial variable, we prove the well-posedness of the weak solution of the considered STFPEs by using the Galerkin approximation method. Moreover, we propose a difference scheme to find the numerical solution of the STFPEs on a metric star graph by approximating the Caputo time derivative using the L1 method and spatial fractional derivative with the Grünwald-Letnikov formula. Finally, we illustrate the performance and the accuracy of the proposed difference scheme via examples.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"60 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-time fractional parabolic equations on a metric star graph with spatial fractional derivative of Sturm-Liouville type: analysis and discretization\",\"authors\":\"Vaibhav Mehandiratta, Mani Mehra\",\"doi\":\"10.1007/s13540-025-00376-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the well-posedness and discretization of the space-time fractional parabolic equations (STFPEs) of the Sturm-Liouville type on a metric star graph. The considered problem involves the fractional time derivative in the Caputo sense, and the spatial fractional derivative is of the Sturm-Liouville type consisting of the composition of the right-sided Caputo derivative and left-sided Riemann-Liouville fractional derivative. By introducing the appropriate function spaces for the involved fractional operators in both the time and spatial variable, we prove the well-posedness of the weak solution of the considered STFPEs by using the Galerkin approximation method. Moreover, we propose a difference scheme to find the numerical solution of the STFPEs on a metric star graph by approximating the Caputo time derivative using the L1 method and spatial fractional derivative with the Grünwald-Letnikov formula. Finally, we illustrate the performance and the accuracy of the proposed difference scheme via examples.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00376-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00376-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了度量星图上Sturm-Liouville型时空分数抛物方程的适定性和离散性。所考虑的问题涉及Caputo意义上的时间分数阶导数,空间分数阶导数为Sturm-Liouville型,由右侧的Caputo导数和左侧的Riemann-Liouville分数阶导数组成。通过在时间变量和空间变量上为所涉及的分数算子引入适当的函数空间,我们用伽辽金近似方法证明了所考虑的STFPEs弱解的适定性。此外,我们提出了一种用L1方法逼近Caputo时间导数和用gr nwald- letnikov公式逼近空间分数阶导数的差分格式来求度量星图上stfpe的数值解。最后,通过实例验证了所提差分格式的性能和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-time fractional parabolic equations on a metric star graph with spatial fractional derivative of Sturm-Liouville type: analysis and discretization

In this paper, we study the well-posedness and discretization of the space-time fractional parabolic equations (STFPEs) of the Sturm-Liouville type on a metric star graph. The considered problem involves the fractional time derivative in the Caputo sense, and the spatial fractional derivative is of the Sturm-Liouville type consisting of the composition of the right-sided Caputo derivative and left-sided Riemann-Liouville fractional derivative. By introducing the appropriate function spaces for the involved fractional operators in both the time and spatial variable, we prove the well-posedness of the weak solution of the considered STFPEs by using the Galerkin approximation method. Moreover, we propose a difference scheme to find the numerical solution of the STFPEs on a metric star graph by approximating the Caputo time derivative using the L1 method and spatial fractional derivative with the Grünwald-Letnikov formula. Finally, we illustrate the performance and the accuracy of the proposed difference scheme via examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信