Peter B R Hartog, Annie M Westerlund, Igor V Tetko, Samuel Genheden
{"title":"Investigations into the Efficiency of Computer-Aided Synthesis Planning.","authors":"Peter B R Hartog, Annie M Westerlund, Igor V Tetko, Samuel Genheden","doi":"10.1021/acs.jcim.4c01821","DOIUrl":null,"url":null,"abstract":"<p><p>The efficiency of machine learning (ML) models is crucial to minimize inference times and reduce the carbon footprints of models deployed in production environments. Current models employed in retrosynthesis to generate a synthesis route from a target molecule to purchasable compounds are prohibitively slow. The model operates in a single-step fashion in a tree search algorithm by predicting reactant molecules given a product molecule as input. In this study, we investigate the ability of alternative transformer architectures, knowledge distillation (KD), and simple hyper-parameter optimization to decrease inference times of the Chemformer model. Initially, we assess the ability of closely related transformer architectures and conclude that these models under-performed when using KD. Additionally, we investigate the effects of feature-based and response-based KD together with hyper-parameters optimized based on inference sample time and model accuracy. We find that although reducing model size and improving single-step speed are important, our results indicate that multi-step search efficiency is more significantly influenced by the diversity and confidence of single-step models. Based on this work, further research should use KD in combination with other techniques, as multi-step speed continues to prevent proper integration of synthesis planning. However, in Monte Carlo-based (MC) multi-step retrosynthesis, other factors play a crucial role in balancing exploration and exploitation during the search process, often outweighing the direct impact of single-step model speed and carbon footprints.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"1771-1781"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01821","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Investigations into the Efficiency of Computer-Aided Synthesis Planning.
The efficiency of machine learning (ML) models is crucial to minimize inference times and reduce the carbon footprints of models deployed in production environments. Current models employed in retrosynthesis to generate a synthesis route from a target molecule to purchasable compounds are prohibitively slow. The model operates in a single-step fashion in a tree search algorithm by predicting reactant molecules given a product molecule as input. In this study, we investigate the ability of alternative transformer architectures, knowledge distillation (KD), and simple hyper-parameter optimization to decrease inference times of the Chemformer model. Initially, we assess the ability of closely related transformer architectures and conclude that these models under-performed when using KD. Additionally, we investigate the effects of feature-based and response-based KD together with hyper-parameters optimized based on inference sample time and model accuracy. We find that although reducing model size and improving single-step speed are important, our results indicate that multi-step search efficiency is more significantly influenced by the diversity and confidence of single-step models. Based on this work, further research should use KD in combination with other techniques, as multi-step speed continues to prevent proper integration of synthesis planning. However, in Monte Carlo-based (MC) multi-step retrosynthesis, other factors play a crucial role in balancing exploration and exploitation during the search process, often outweighing the direct impact of single-step model speed and carbon footprints.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.