过渡金属中自旋轨道相互作用驱动的太赫兹非线性动力学。

npj Spintronics Pub Date : 2025-01-01 Epub Date: 2025-01-27 DOI:10.1038/s44306-024-00068-7
Ruslan Salikhov, Markus Lysne, Philipp Werner, Igor Ilyakov, Michael Schüler, Thales V A G de Oliveira, Alexey Ponomaryov, Atiqa Arshad, Gulloo Lal Prajapati, Jan-Christoph Deinert, Pavlo Makushko, Denys Makarov, Thomas Cowan, Jürgen Fassbender, Jürgen Lindner, Aleksandra Lindner, Carmine Ortix, Sergey Kovalev
{"title":"过渡金属中自旋轨道相互作用驱动的太赫兹非线性动力学。","authors":"Ruslan Salikhov, Markus Lysne, Philipp Werner, Igor Ilyakov, Michael Schüler, Thales V A G de Oliveira, Alexey Ponomaryov, Atiqa Arshad, Gulloo Lal Prajapati, Jan-Christoph Deinert, Pavlo Makushko, Denys Makarov, Thomas Cowan, Jürgen Fassbender, Jürgen Lindner, Aleksandra Lindner, Carmine Ortix, Sergey Kovalev","doi":"10.1038/s44306-024-00068-7","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay of electronic charge, spin, and orbital currents, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz lightwave spintronics and orbitronics. The essential rules for how terahertz fields interact with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests. We utilized terahertz harmonic generation spectroscopy to investigate the nonlinear dynamics over picosecond timescales in various transition metal films. We found that the terahertz harmonic generation efficiency scales with the spin Hall conductivity in the studied films, while the phase takes two possible values (shifted by π), depending on the <i>d</i>-shell filling. These findings elucidate the fundamental mechanisms governing non-equilibrium spin and orbital polarization dynamics at terahertz frequencies, which is relevant for potential applications of terahertz spin- and orbital-based devices.</p>","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":"3 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772253/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spin-orbit interaction driven terahertz nonlinear dynamics in transition metals.\",\"authors\":\"Ruslan Salikhov, Markus Lysne, Philipp Werner, Igor Ilyakov, Michael Schüler, Thales V A G de Oliveira, Alexey Ponomaryov, Atiqa Arshad, Gulloo Lal Prajapati, Jan-Christoph Deinert, Pavlo Makushko, Denys Makarov, Thomas Cowan, Jürgen Fassbender, Jürgen Lindner, Aleksandra Lindner, Carmine Ortix, Sergey Kovalev\",\"doi\":\"10.1038/s44306-024-00068-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interplay of electronic charge, spin, and orbital currents, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz lightwave spintronics and orbitronics. The essential rules for how terahertz fields interact with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests. We utilized terahertz harmonic generation spectroscopy to investigate the nonlinear dynamics over picosecond timescales in various transition metal films. We found that the terahertz harmonic generation efficiency scales with the spin Hall conductivity in the studied films, while the phase takes two possible values (shifted by π), depending on the <i>d</i>-shell filling. These findings elucidate the fundamental mechanisms governing non-equilibrium spin and orbital polarization dynamics at terahertz frequencies, which is relevant for potential applications of terahertz spin- and orbital-based devices.</p>\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\"3 1\",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772253/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44306-024-00068-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44306-024-00068-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自旋-轨道耦合系统中,由皮秒长的光场振荡相干驱动的电荷、自旋和轨道电流的相互作用,是新兴的太赫兹光波自旋电子学和轨道电子学的基础。太赫兹场如何以非线性方式与这些系统相互作用的基本规则仍然不清楚。在这项工作中,我们证明了一种普遍适用的电子非线性,起源于导电材料中的自旋-轨道相互作用,其中光诱导自旋和轨道织构的相互作用表现出来。我们利用太赫兹谐波产生光谱研究了各种过渡金属薄膜在皮秒时间尺度上的非线性动力学。我们发现,在研究的薄膜中,太赫兹谐波产生效率随自旋霍尔电导率的变化而变化,而相位则有两个可能的值(偏移π),这取决于d-壳层填充。这些发现阐明了太赫兹频率下控制非平衡自旋和轨道极化动力学的基本机制,这与太赫兹自旋和轨道器件的潜在应用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin-orbit interaction driven terahertz nonlinear dynamics in transition metals.

The interplay of electronic charge, spin, and orbital currents, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz lightwave spintronics and orbitronics. The essential rules for how terahertz fields interact with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests. We utilized terahertz harmonic generation spectroscopy to investigate the nonlinear dynamics over picosecond timescales in various transition metal films. We found that the terahertz harmonic generation efficiency scales with the spin Hall conductivity in the studied films, while the phase takes two possible values (shifted by π), depending on the d-shell filling. These findings elucidate the fundamental mechanisms governing non-equilibrium spin and orbital polarization dynamics at terahertz frequencies, which is relevant for potential applications of terahertz spin- and orbital-based devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信