层次文本分类的层次感知序列生成。

Vidit Jain, Mukund Rungta, Yuchen Zhuang, Yue Yu, Zeyu Wang, Mu Gao, Jeffrey Skolnick, Chao Zhang
{"title":"层次文本分类的层次感知序列生成。","authors":"Vidit Jain, Mukund Rungta, Yuchen Zhuang, Yue Yu, Zeyu Wang, Mu Gao, Jeffrey Skolnick, Chao Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Hierarchical text classification (HTC) is a complex subtask under multi-label text classification, characterized by a hierarchical label taxonomy and data imbalance. The best-performing models aim to learn a static representation by combining document and hierarchical label information. However, the relevance of document sections can vary based on the hierarchy level, necessitating a dynamic document representation. To address this, we propose HiGen, a text-generation-based framework utilizing language models to encode dynamic text representations. We introduce a level-guided loss function to capture the relationship between text and label name semantics. Our approach incorporates a task-specific pretraining strategy, adapting the language model to in-domain knowledge and significantly enhancing performance for classes with limited examples. Furthermore, we present a new and valuable dataset called ENZYME, designed for HTC, which comprises articles from PubMed with the goal of predicting Enzyme Commission (EC) numbers. Through extensive experiments on the ENZYME dataset and the widely recognized WOS and NYT datasets, our methodology demonstrates superior performance, surpassing existing approaches while efficiently handling data and mitigating class imbalance. We release our code and dataset here: https://github.com/viditjain99/HiGen.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2024 EACL","pages":"1354-1368"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781299/pdf/","citationCount":"0","resultStr":"{\"title\":\"HiGen: Hierarchy-Aware Sequence Generation for Hierarchical Text Classification.\",\"authors\":\"Vidit Jain, Mukund Rungta, Yuchen Zhuang, Yue Yu, Zeyu Wang, Mu Gao, Jeffrey Skolnick, Chao Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hierarchical text classification (HTC) is a complex subtask under multi-label text classification, characterized by a hierarchical label taxonomy and data imbalance. The best-performing models aim to learn a static representation by combining document and hierarchical label information. However, the relevance of document sections can vary based on the hierarchy level, necessitating a dynamic document representation. To address this, we propose HiGen, a text-generation-based framework utilizing language models to encode dynamic text representations. We introduce a level-guided loss function to capture the relationship between text and label name semantics. Our approach incorporates a task-specific pretraining strategy, adapting the language model to in-domain knowledge and significantly enhancing performance for classes with limited examples. Furthermore, we present a new and valuable dataset called ENZYME, designed for HTC, which comprises articles from PubMed with the goal of predicting Enzyme Commission (EC) numbers. Through extensive experiments on the ENZYME dataset and the widely recognized WOS and NYT datasets, our methodology demonstrates superior performance, surpassing existing approaches while efficiently handling data and mitigating class imbalance. We release our code and dataset here: https://github.com/viditjain99/HiGen.</p>\",\"PeriodicalId\":74541,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"volume\":\"2024 EACL\",\"pages\":\"1354-1368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层次文本分类是多标签文本分类下的一项复杂子任务,具有层次标签分类和数据不平衡的特点。性能最好的模型旨在通过组合文档和分层标签信息来学习静态表示。但是,文档部分的相关性可能会根据层次结构级别而变化,因此需要动态文档表示。为了解决这个问题,我们提出了HiGen,一个基于文本生成的框架,利用语言模型对动态文本表示进行编码。我们引入了一个水平引导的损失函数来捕获文本和标签名称语义之间的关系。我们的方法结合了特定任务的预训练策略,使语言模型适应领域内的知识,并显著提高了具有有限示例的类的性能。此外,我们提出了一个新的和有价值的数据集,称为酶,为HTC设计,其中包括来自PubMed的文章,目的是预测酶委员会(EC)数字。通过在ENZYME数据集和广泛认可的WOS和NYT数据集上的大量实验,我们的方法展示了卓越的性能,超越了现有的方法,同时有效地处理数据并减轻了类不平衡。我们在这里发布代码和数据集:https://github.com/viditjain99/HiGen。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HiGen: Hierarchy-Aware Sequence Generation for Hierarchical Text Classification.

Hierarchical text classification (HTC) is a complex subtask under multi-label text classification, characterized by a hierarchical label taxonomy and data imbalance. The best-performing models aim to learn a static representation by combining document and hierarchical label information. However, the relevance of document sections can vary based on the hierarchy level, necessitating a dynamic document representation. To address this, we propose HiGen, a text-generation-based framework utilizing language models to encode dynamic text representations. We introduce a level-guided loss function to capture the relationship between text and label name semantics. Our approach incorporates a task-specific pretraining strategy, adapting the language model to in-domain knowledge and significantly enhancing performance for classes with limited examples. Furthermore, we present a new and valuable dataset called ENZYME, designed for HTC, which comprises articles from PubMed with the goal of predicting Enzyme Commission (EC) numbers. Through extensive experiments on the ENZYME dataset and the widely recognized WOS and NYT datasets, our methodology demonstrates superior performance, surpassing existing approaches while efficiently handling data and mitigating class imbalance. We release our code and dataset here: https://github.com/viditjain99/HiGen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信