多重头法同时测定芬太尼、芬太尼类似物及其他滥用药物。

IF 3.2 4区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics
J P Smith, M Alexander-Scott, C Striley, D Sammons
{"title":"多重头法同时测定芬太尼、芬太尼类似物及其他滥用药物。","authors":"J P Smith, M Alexander-Scott, C Striley, D Sammons","doi":"10.1080/15376516.2025.2457336","DOIUrl":null,"url":null,"abstract":"<p><p>Quantification of illicit drugs and controlled substances, in urine or as surface contamination, is often performed using expensive analytical techniques such as liquid chromatography with tandem mass spectrometry (LC-MS/MS). A time and cost-effective semi-quantitative surface-wipe and urine screening multiplex immunoassay for fentanyl and its analogues was developed in this investigation. We previously created a surface wipe multiplex immunoassay for methamphetamine, caffeine, cocaine, tetrahy-drocannabinol (THC) and oxycodone. This fluorescent covalent microsphere immunosorbent assay (FCMIA) is a competitive assay where drugs compete with protein-drug conjugates attached to microspheres for antibodies. It was assembled using a commercially available fentanyl antibody and protein-conjugate. Surface recovery from ceramic tiles was assessed by FCMIA, with results ranging from 26% for fentanyl to 60% for methamphetamine. Only fentanyl and its structurally similar analogues showed significant response to the fentanyl assay whereas, analogues structurally similar to carfentanil gave no response. Non-fentanyl drug assays did not appreciably detect fentanyl or its analogues. Overall, this method is a useful tool for assessing surface contamination and the effectiveness of decontamination by multiple drugs of abuse, potentially lowering workplace exposures. To broaden applicability, different antibodies or aptamers must be developed to detect structural differences found in classes of analogues such as carfentanil.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-11"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous measurement of fentanyl, fentanyl analogues and other drugs of abuse by multiplex bead assay.\",\"authors\":\"J P Smith, M Alexander-Scott, C Striley, D Sammons\",\"doi\":\"10.1080/15376516.2025.2457336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantification of illicit drugs and controlled substances, in urine or as surface contamination, is often performed using expensive analytical techniques such as liquid chromatography with tandem mass spectrometry (LC-MS/MS). A time and cost-effective semi-quantitative surface-wipe and urine screening multiplex immunoassay for fentanyl and its analogues was developed in this investigation. We previously created a surface wipe multiplex immunoassay for methamphetamine, caffeine, cocaine, tetrahy-drocannabinol (THC) and oxycodone. This fluorescent covalent microsphere immunosorbent assay (FCMIA) is a competitive assay where drugs compete with protein-drug conjugates attached to microspheres for antibodies. It was assembled using a commercially available fentanyl antibody and protein-conjugate. Surface recovery from ceramic tiles was assessed by FCMIA, with results ranging from 26% for fentanyl to 60% for methamphetamine. Only fentanyl and its structurally similar analogues showed significant response to the fentanyl assay whereas, analogues structurally similar to carfentanil gave no response. Non-fentanyl drug assays did not appreciably detect fentanyl or its analogues. Overall, this method is a useful tool for assessing surface contamination and the effectiveness of decontamination by multiple drugs of abuse, potentially lowering workplace exposures. To broaden applicability, different antibodies or aptamers must be developed to detect structural differences found in classes of analogues such as carfentanil.</p>\",\"PeriodicalId\":23177,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2025.2457336\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2025.2457336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

在尿液中或作为表面污染的非法药物和管制物质的定量通常使用昂贵的分析技术,如液相色谱串联质谱(LC-MS/MS)。在这项研究中,开发了一种时间和成本效益高的半定量表面擦拭和尿液筛选多重免疫测定芬太尼及其类似物。我们之前创建了一种表面擦拭多重免疫分析法,用于甲基苯丙胺、咖啡因、可卡因、四氢氢大麻酚(THC)和羟考酮。这种荧光共价微球免疫吸附试验(FCMIA)是一种竞争性试验,其中药物与附着在微球上的蛋白质-药物偶联物竞争抗体。它是用市售的芬太尼抗体和蛋白质偶联物组装的。FCMIA评估了瓷砖的表面回收率,结果从芬太尼的26%到甲基苯丙胺的60%不等。只有芬太尼及其结构相似的类似物对芬太尼试验有显著反应,而与卡芬太尼结构相似的类似物没有反应。非芬太尼药物试验没有明显地检测到芬太尼或其类似物。总的来说,这种方法是评估表面污染和多种滥用药物去污效果的有用工具,可能会降低工作场所的暴露。为了扩大适用性,必须开发不同的抗体或适体来检测卡芬太尼等类似物中发现的结构差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous measurement of fentanyl, fentanyl analogues and other drugs of abuse by multiplex bead assay.

Quantification of illicit drugs and controlled substances, in urine or as surface contamination, is often performed using expensive analytical techniques such as liquid chromatography with tandem mass spectrometry (LC-MS/MS). A time and cost-effective semi-quantitative surface-wipe and urine screening multiplex immunoassay for fentanyl and its analogues was developed in this investigation. We previously created a surface wipe multiplex immunoassay for methamphetamine, caffeine, cocaine, tetrahy-drocannabinol (THC) and oxycodone. This fluorescent covalent microsphere immunosorbent assay (FCMIA) is a competitive assay where drugs compete with protein-drug conjugates attached to microspheres for antibodies. It was assembled using a commercially available fentanyl antibody and protein-conjugate. Surface recovery from ceramic tiles was assessed by FCMIA, with results ranging from 26% for fentanyl to 60% for methamphetamine. Only fentanyl and its structurally similar analogues showed significant response to the fentanyl assay whereas, analogues structurally similar to carfentanil gave no response. Non-fentanyl drug assays did not appreciably detect fentanyl or its analogues. Overall, this method is a useful tool for assessing surface contamination and the effectiveness of decontamination by multiple drugs of abuse, potentially lowering workplace exposures. To broaden applicability, different antibodies or aptamers must be developed to detect structural differences found in classes of analogues such as carfentanil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.10%
发文量
66
审稿时长
6-12 weeks
期刊介绍: Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy. Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信