{"title":"前瞻性研究揭示了血浆蛋白质组学与痴呆的联系。","authors":"Jincheng Li, Jialin Li, Shuaizhou Chen, Zhenqiu Liu, Jiacheng Dai, Yingzhe Wang, Mei Cui, Chen Suo, Kelin Xu, Li Jin, Xingdong Chen, Yanfeng Jiang","doi":"10.1007/s12035-025-04716-9","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating plasma proteomic signatures of dementia offers insights into its pathology, aids biomarker discovery, supports disease monitoring, and informs drug development. Here, we analyzed data from 48,367 UK Biobank participants with proteomic profiling. Using Cox and generalized linear models, we examined the longitudinal associations between proteomic signatures and dementia-related phenotypes. Mendelian randomization analysis was employed to identify causal associations, and machine learning algorithms were applied to develop protein-based models for dementia prediction. We identified 74 proteins significantly associated with the risk of various types of dementia and cognitive functions after Bonferroni correction. Among these, strong associations were observed for growth/differentiation factor 15 (GDF15), glial fibrillary acidic protein (GFAP), and neurofilament light polypeptide (NEFL), across all types of dementia. Additionally, 15 proteins demonstrated significant associations with neuroimaging-defined dementia endophenotypes. Two-sample Mendelian randomization analyses further substantiated causal relationships between dementia-associated proteins and Alzheimer's disease, particularly involving GDF15, proto-oncogene tyrosine-protein kinase receptor Ret (RET), and GFAP. Moreover, we identified three protein modules associated with dementia, primarily linked to immune system processes, angiogenesis, and energy metabolism, providing insights into potential biological pathways underlying the disease. Furthermore, we proposed a ten-protein panel capable of forecasting dementia over a median follow-up period of 8.6 years, achieving an area under the curve (AUC) of 0.857 (95% confidence interval (CI), 0.837-0.876). Our results revealed dementia-associated plasma proteomic signatures, and their causal relationships, notably GDF15-RET signaling with Alzheimer's disease, and proposed a promising protein panel for high-risk dementia screening.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7345-7360"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospective Investigation Unravels Plasma Proteomic Links to Dementia.\",\"authors\":\"Jincheng Li, Jialin Li, Shuaizhou Chen, Zhenqiu Liu, Jiacheng Dai, Yingzhe Wang, Mei Cui, Chen Suo, Kelin Xu, Li Jin, Xingdong Chen, Yanfeng Jiang\",\"doi\":\"10.1007/s12035-025-04716-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Investigating plasma proteomic signatures of dementia offers insights into its pathology, aids biomarker discovery, supports disease monitoring, and informs drug development. Here, we analyzed data from 48,367 UK Biobank participants with proteomic profiling. Using Cox and generalized linear models, we examined the longitudinal associations between proteomic signatures and dementia-related phenotypes. Mendelian randomization analysis was employed to identify causal associations, and machine learning algorithms were applied to develop protein-based models for dementia prediction. We identified 74 proteins significantly associated with the risk of various types of dementia and cognitive functions after Bonferroni correction. Among these, strong associations were observed for growth/differentiation factor 15 (GDF15), glial fibrillary acidic protein (GFAP), and neurofilament light polypeptide (NEFL), across all types of dementia. Additionally, 15 proteins demonstrated significant associations with neuroimaging-defined dementia endophenotypes. Two-sample Mendelian randomization analyses further substantiated causal relationships between dementia-associated proteins and Alzheimer's disease, particularly involving GDF15, proto-oncogene tyrosine-protein kinase receptor Ret (RET), and GFAP. Moreover, we identified three protein modules associated with dementia, primarily linked to immune system processes, angiogenesis, and energy metabolism, providing insights into potential biological pathways underlying the disease. Furthermore, we proposed a ten-protein panel capable of forecasting dementia over a median follow-up period of 8.6 years, achieving an area under the curve (AUC) of 0.857 (95% confidence interval (CI), 0.837-0.876). Our results revealed dementia-associated plasma proteomic signatures, and their causal relationships, notably GDF15-RET signaling with Alzheimer's disease, and proposed a promising protein panel for high-risk dementia screening.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"7345-7360\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04716-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04716-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Prospective Investigation Unravels Plasma Proteomic Links to Dementia.
Investigating plasma proteomic signatures of dementia offers insights into its pathology, aids biomarker discovery, supports disease monitoring, and informs drug development. Here, we analyzed data from 48,367 UK Biobank participants with proteomic profiling. Using Cox and generalized linear models, we examined the longitudinal associations between proteomic signatures and dementia-related phenotypes. Mendelian randomization analysis was employed to identify causal associations, and machine learning algorithms were applied to develop protein-based models for dementia prediction. We identified 74 proteins significantly associated with the risk of various types of dementia and cognitive functions after Bonferroni correction. Among these, strong associations were observed for growth/differentiation factor 15 (GDF15), glial fibrillary acidic protein (GFAP), and neurofilament light polypeptide (NEFL), across all types of dementia. Additionally, 15 proteins demonstrated significant associations with neuroimaging-defined dementia endophenotypes. Two-sample Mendelian randomization analyses further substantiated causal relationships between dementia-associated proteins and Alzheimer's disease, particularly involving GDF15, proto-oncogene tyrosine-protein kinase receptor Ret (RET), and GFAP. Moreover, we identified three protein modules associated with dementia, primarily linked to immune system processes, angiogenesis, and energy metabolism, providing insights into potential biological pathways underlying the disease. Furthermore, we proposed a ten-protein panel capable of forecasting dementia over a median follow-up period of 8.6 years, achieving an area under the curve (AUC) of 0.857 (95% confidence interval (CI), 0.837-0.876). Our results revealed dementia-associated plasma proteomic signatures, and their causal relationships, notably GDF15-RET signaling with Alzheimer's disease, and proposed a promising protein panel for high-risk dementia screening.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.