人细胞复制起始点放电过程中的定量染色质蛋白动力学。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Molecular & Cellular Proteomics Pub Date : 2025-03-01 Epub Date: 2025-01-27 DOI:10.1016/j.mcpro.2025.100915
Sampath Amitash Gadi, Ivo Alexander Hendriks, Christian Friberg Nielsen, Petya Popova, Ian D Hickson, Michael Lund Nielsen, Luis Toledo
{"title":"人细胞复制起始点放电过程中的定量染色质蛋白动力学。","authors":"Sampath Amitash Gadi, Ivo Alexander Hendriks, Christian Friberg Nielsen, Petya Popova, Ian D Hickson, Michael Lund Nielsen, Luis Toledo","doi":"10.1016/j.mcpro.2025.100915","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate genome duplication requires a tightly regulated DNA replication program that relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyze protein recruitment to the chromatin during induced origin firing in human cells. Using a specific inhibitor against CHK1 kinase, we induced a synchronized wave of dormant origin firing (DOF) and assessed the S phase chromatin proteome at different time points. We provide time-resolved loading dynamics of 3269 proteins, including the core replication machinery and origin firing factors. This dataset accurately represents known temporal dynamics of proteins on the chromatin during the activation of replication forks and the subsequent DNA damage due to the hyperactivation of excessive replication forks. Finally, we used our dataset to identify the condensin II subunit NCAPH2 as a novel factor required for efficient origin firing and replication. Overall, we provide a comprehensive resource to interrogate the protein recruitment dynamics of replication origin firing events in human cells.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100915"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative Chromatin Protein Dynamics During Replication Origin Firing in Human Cells.\",\"authors\":\"Sampath Amitash Gadi, Ivo Alexander Hendriks, Christian Friberg Nielsen, Petya Popova, Ian D Hickson, Michael Lund Nielsen, Luis Toledo\",\"doi\":\"10.1016/j.mcpro.2025.100915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate genome duplication requires a tightly regulated DNA replication program that relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyze protein recruitment to the chromatin during induced origin firing in human cells. Using a specific inhibitor against CHK1 kinase, we induced a synchronized wave of dormant origin firing (DOF) and assessed the S phase chromatin proteome at different time points. We provide time-resolved loading dynamics of 3269 proteins, including the core replication machinery and origin firing factors. This dataset accurately represents known temporal dynamics of proteins on the chromatin during the activation of replication forks and the subsequent DNA damage due to the hyperactivation of excessive replication forks. Finally, we used our dataset to identify the condensin II subunit NCAPH2 as a novel factor required for efficient origin firing and replication. Overall, we provide a comprehensive resource to interrogate the protein recruitment dynamics of replication origin firing events in human cells.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100915\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2025.100915\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100915","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

精确的基因组复制需要严格调控的DNA复制程序,而这又依赖于精细调控的起始激活。虽然在出芽酵母中主要确定了起源发射的分子步骤,但在人类细胞中这一过程的复杂性尚未得到充分阐明。在这里,我们描述了一种简单的蛋白质组学方法来系统地分析人类细胞中诱导起源放电期间染色质的蛋白质募集。使用一种针对CHK1激酶的特异性抑制剂,我们诱导了一个同步的休眠起始放电波(DOF),并在不同的时间点评估了S期染色质蛋白质组。我们提供了3,269种蛋白质的时间分辨加载动力学,包括核心复制机制和起始发射因子。该数据集准确地代表了在复制叉激活期间染色质上蛋白质的已知时间动态以及由于过度复制叉的过度激活而导致的随后的DNA损伤。最后,我们利用我们的数据集确定了凝缩蛋白II亚基NCAPH2是有效起始激发和复制所需的新因子。总的来说,我们提供了一个全面的资源来询问人类细胞中复制起始触发事件的蛋白质募集动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Chromatin Protein Dynamics During Replication Origin Firing in Human Cells.

Accurate genome duplication requires a tightly regulated DNA replication program that relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyze protein recruitment to the chromatin during induced origin firing in human cells. Using a specific inhibitor against CHK1 kinase, we induced a synchronized wave of dormant origin firing (DOF) and assessed the S phase chromatin proteome at different time points. We provide time-resolved loading dynamics of 3269 proteins, including the core replication machinery and origin firing factors. This dataset accurately represents known temporal dynamics of proteins on the chromatin during the activation of replication forks and the subsequent DNA damage due to the hyperactivation of excessive replication forks. Finally, we used our dataset to identify the condensin II subunit NCAPH2 as a novel factor required for efficient origin firing and replication. Overall, we provide a comprehensive resource to interrogate the protein recruitment dynamics of replication origin firing events in human cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信