阐明s -腺苷蛋氨酸和组胺结合对n -甲基转移酶构象动力学的影响:来自计算机研究的见解。

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Qi Chu , Shuyang Sun , Congcong Li , Ge Qu , Zhoutong Sun
{"title":"阐明s -腺苷蛋氨酸和组胺结合对n -甲基转移酶构象动力学的影响:来自计算机研究的见解。","authors":"Qi Chu ,&nbsp;Shuyang Sun ,&nbsp;Congcong Li ,&nbsp;Ge Qu ,&nbsp;Zhoutong Sun","doi":"10.1016/j.jmgm.2025.108961","DOIUrl":null,"url":null,"abstract":"<div><div>S-adenosylmethionine (SAM)-dependent histamine N-methyltransferase (HNMT) is a crucial enzyme involved in histamine methylation, playing an important role in the epigenetic modification of biology. It entails the addition of methyl groups to histamine molecules, thereby regulating gene expression, cellular signal transduction, and other biological processes. Therefore, gaining a profound understanding of the detailed mechanism underlying HNMT-mediated methylation reactions is instrumental in elucidating the role of histamine methylation in biology. This study employed molecular dynamics (MD) simulations to assess the mechanism of cooperative catalytic reaction between the substrate-binding domain (S domain) and the cofactor-binding domain (C domain) of HNMT. The results indicated that the interplay between the cofactor (SAM) and the C domain was mostly unaltered by substrate Histamine (HSM) binding. Nevertheless, SAM binding could induce conformational changes in the S domain, thus creating a favorable environment for substrate recognition and catalysis. Additionally, key amino acid residues that significantly contributed to substrate binding were identified based on molecular mechanics-generalized Born surface area (MM/GBSA) calculations. These findings could serve as a theoretical basis for the design of potential inhibitors and modulators targeting HNMT.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"136 ","pages":"Article 108961"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the impact of S-adenosylmethionine and histamine binding on N-methyltransferase conformational dynamics: Insights from an in silico study\",\"authors\":\"Qi Chu ,&nbsp;Shuyang Sun ,&nbsp;Congcong Li ,&nbsp;Ge Qu ,&nbsp;Zhoutong Sun\",\"doi\":\"10.1016/j.jmgm.2025.108961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>S-adenosylmethionine (SAM)-dependent histamine N-methyltransferase (HNMT) is a crucial enzyme involved in histamine methylation, playing an important role in the epigenetic modification of biology. It entails the addition of methyl groups to histamine molecules, thereby regulating gene expression, cellular signal transduction, and other biological processes. Therefore, gaining a profound understanding of the detailed mechanism underlying HNMT-mediated methylation reactions is instrumental in elucidating the role of histamine methylation in biology. This study employed molecular dynamics (MD) simulations to assess the mechanism of cooperative catalytic reaction between the substrate-binding domain (S domain) and the cofactor-binding domain (C domain) of HNMT. The results indicated that the interplay between the cofactor (SAM) and the C domain was mostly unaltered by substrate Histamine (HSM) binding. Nevertheless, SAM binding could induce conformational changes in the S domain, thus creating a favorable environment for substrate recognition and catalysis. Additionally, key amino acid residues that significantly contributed to substrate binding were identified based on molecular mechanics-generalized Born surface area (MM/GBSA) calculations. These findings could serve as a theoretical basis for the design of potential inhibitors and modulators targeting HNMT.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"136 \",\"pages\":\"Article 108961\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109332632500021X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109332632500021X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

s -腺苷蛋氨酸(SAM)依赖性组胺n -甲基转移酶(HNMT)是参与组胺甲基化的关键酶,在生物学的表观遗传修饰中起着重要作用。它需要在组胺分子上添加甲基,从而调节基因表达、细胞信号转导和其他生物过程。因此,深入了解hnmt介导的甲基化反应的详细机制有助于阐明组胺甲基化在生物学中的作用。本研究采用分子动力学(MD)模拟研究了HNMT底物结合域(S域)和辅因子结合域(C域)协同催化反应的机理。结果表明,辅因子(SAM)与C结构域的相互作用基本不受底物组胺(HSM)结合的影响。然而,SAM结合可以诱导S结构域的构象变化,从而为底物识别和催化创造有利的环境。此外,根据分子力学-广义Born表面积(MM/GBSA)计算,确定了对底物结合有重要贡献的关键氨基酸残基。这些发现可以作为设计靶向HNMT的潜在抑制剂和调节剂的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidating the impact of S-adenosylmethionine and histamine binding on N-methyltransferase conformational dynamics: Insights from an in silico study

Elucidating the impact of S-adenosylmethionine and histamine binding on N-methyltransferase conformational dynamics: Insights from an in silico study
S-adenosylmethionine (SAM)-dependent histamine N-methyltransferase (HNMT) is a crucial enzyme involved in histamine methylation, playing an important role in the epigenetic modification of biology. It entails the addition of methyl groups to histamine molecules, thereby regulating gene expression, cellular signal transduction, and other biological processes. Therefore, gaining a profound understanding of the detailed mechanism underlying HNMT-mediated methylation reactions is instrumental in elucidating the role of histamine methylation in biology. This study employed molecular dynamics (MD) simulations to assess the mechanism of cooperative catalytic reaction between the substrate-binding domain (S domain) and the cofactor-binding domain (C domain) of HNMT. The results indicated that the interplay between the cofactor (SAM) and the C domain was mostly unaltered by substrate Histamine (HSM) binding. Nevertheless, SAM binding could induce conformational changes in the S domain, thus creating a favorable environment for substrate recognition and catalysis. Additionally, key amino acid residues that significantly contributed to substrate binding were identified based on molecular mechanics-generalized Born surface area (MM/GBSA) calculations. These findings could serve as a theoretical basis for the design of potential inhibitors and modulators targeting HNMT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信