健康男性静脉注射14c微示踪剂与吸入剂量后坦尼司特的药代动力学和吸收、分布、代谢和排泄分析

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Metabolism and Disposition Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1124/dmd.124.001895
Michele Bassi, Veronica Puviani, Debora Santoro, Sonia Biondaro, Aida Emirova, Mirco Govoni
{"title":"健康男性静脉注射14c微示踪剂与吸入剂量后坦尼司特的药代动力学和吸收、分布、代谢和排泄分析","authors":"Michele Bassi, Veronica Puviani, Debora Santoro, Sonia Biondaro, Aida Emirova, Mirco Govoni","doi":"10.1124/dmd.124.001895","DOIUrl":null,"url":null,"abstract":"<p><p>Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([<sup>14</sup>C]-tanimilast: 18.5 μg and 500 nCi). Plasma, whole blood, urine, and feces samples were collected up to 240 hours after dose to quantify nonradiolabeled tanimilast, [<sup>14</sup>C]-tanimilast, and total-[<sup>14</sup>C]. The inhaled absolute bioavailability of tanimilast was found to be approximately 50%. Following intravenous administration of [<sup>14</sup>C]-tanimilast, plasma clearance was 22 L/h, the steady-state volume of distribution was 201 L, and the half-life was shorter compared to inhaled administration (14 vs 39 hours, respectively), suggesting that plasma elimination is limited by the absorption rate from the lungs. Seventy-nine percent (71% in feces; 8% in urine) of the intravenous dose was recovered in excreta as total-[<sup>14</sup>C]. [<sup>14</sup>C]-tanimilast was the major radioactive compound in plasma, whereas no recovery was observed in urine and only 0.3% was recovered in feces, indicating predominant elimination through metabolic route. Importantly, as far as no metabolites accounting for more than 10% of the circulating drug-related exposure in plasma or the administered dose in excreta were detected, no further qualification is required according to regulatory guidelines. This study design successfully characterized the absorption, distribution, and elimination of tanimilast, providing key pharmacokinetic parameters to support its clinical development and regulatory application. SIGNIFICANCE STATEMENT: This trial investigates pharmacokinetic and absorption, distribution, metabolism and excretion profile of tanimilast, an inhaled phosphodiesterase-4 inhibitor for chronic obstructive pulmonary disease and asthma. Eight male volunteers received a dose of nonradiolabeled tanimilast via Chiesi NEXThaler and a microtracer intravenous dose. Results show pivotal pharmacokinetic results for the characterization of tanimilast, excretion route and quantification of significant metabolites, facilitating streamlined clinical development and regulatory approval.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":"53 1","pages":"100009"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics and absorption, distribution, metabolism and excretion profiling of tanimilast following an intravenous <sup>14</sup>C-microtracer coadministered with an inhaled dose in healthy male individuals.\",\"authors\":\"Michele Bassi, Veronica Puviani, Debora Santoro, Sonia Biondaro, Aida Emirova, Mirco Govoni\",\"doi\":\"10.1124/dmd.124.001895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([<sup>14</sup>C]-tanimilast: 18.5 μg and 500 nCi). Plasma, whole blood, urine, and feces samples were collected up to 240 hours after dose to quantify nonradiolabeled tanimilast, [<sup>14</sup>C]-tanimilast, and total-[<sup>14</sup>C]. The inhaled absolute bioavailability of tanimilast was found to be approximately 50%. Following intravenous administration of [<sup>14</sup>C]-tanimilast, plasma clearance was 22 L/h, the steady-state volume of distribution was 201 L, and the half-life was shorter compared to inhaled administration (14 vs 39 hours, respectively), suggesting that plasma elimination is limited by the absorption rate from the lungs. Seventy-nine percent (71% in feces; 8% in urine) of the intravenous dose was recovered in excreta as total-[<sup>14</sup>C]. [<sup>14</sup>C]-tanimilast was the major radioactive compound in plasma, whereas no recovery was observed in urine and only 0.3% was recovered in feces, indicating predominant elimination through metabolic route. Importantly, as far as no metabolites accounting for more than 10% of the circulating drug-related exposure in plasma or the administered dose in excreta were detected, no further qualification is required according to regulatory guidelines. This study design successfully characterized the absorption, distribution, and elimination of tanimilast, providing key pharmacokinetic parameters to support its clinical development and regulatory application. SIGNIFICANCE STATEMENT: This trial investigates pharmacokinetic and absorption, distribution, metabolism and excretion profile of tanimilast, an inhaled phosphodiesterase-4 inhibitor for chronic obstructive pulmonary disease and asthma. Eight male volunteers received a dose of nonradiolabeled tanimilast via Chiesi NEXThaler and a microtracer intravenous dose. Results show pivotal pharmacokinetic results for the characterization of tanimilast, excretion route and quantification of significant metabolites, facilitating streamlined clinical development and regulatory approval.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\"53 1\",\"pages\":\"100009\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.124.001895\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001895","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

Tanimilast是一种吸入性磷酸二酯酶-4抑制剂,目前处于临床III期,用于治疗慢性阻塞性肺疾病和哮喘。本试验旨在表征坦尼司特的药代动力学、质量平衡和代谢物谱。8名健康男性志愿者通过粉状吸入器(Chiesi NEXThaler [3200 μg])接受单剂量非放射性标记tanimilast,随后静脉注射微示踪剂([14C]-tanimilast: 18.5 μg和500 nCi)。在给药后240小时内收集血浆、全血、尿液和粪便样本,定量非放射性标记的塔尼司特、[14C]-塔尼司特和总-[14C]。他尼司特的吸入绝对生物利用度约为50%。静脉给药[14C]-tanimilast后,血浆清除率为22 L/h,稳态分布容积为201 L,半衰期较吸入给药更短(分别为14小时和39小时),提示血浆消除受肺部吸收率的限制。79%(71%在粪便中;静脉注射剂量的8%(尿中)在排泄物中被回收为总-[14C]。[14C]-塔尼司特是血浆中主要的放射性化合物,而在尿液中没有回收,在粪便中只有0.3%的回收,表明主要通过代谢途径消除。重要的是,只要未检测到血浆或排泄物中代谢物占循环药物相关暴露量的10%以上,则根据监管指南无需进一步鉴定。本研究设计成功表征了坦尼司特的吸收、分布和消除,为其临床开发和监管应用提供了关键的药代动力学参数。意义声明:本试验研究了治疗慢性阻塞性肺疾病和哮喘的吸入性磷酸二酯酶-4抑制剂他尼司特的药代动力学和吸收、分布、代谢和排泄特征。8名男性志愿者通过Chiesi NEXThaler接受了一剂非放射性标记的坦尼司特和一剂微示踪剂静脉注射。结果显示了关键的药代动力学结果,用于坦尼司特的表征、排泄途径和重要代谢物的定量,促进了简化的临床开发和监管审批。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacokinetics and absorption, distribution, metabolism and excretion profiling of tanimilast following an intravenous 14C-microtracer coadministered with an inhaled dose in healthy male individuals.

Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([14C]-tanimilast: 18.5 μg and 500 nCi). Plasma, whole blood, urine, and feces samples were collected up to 240 hours after dose to quantify nonradiolabeled tanimilast, [14C]-tanimilast, and total-[14C]. The inhaled absolute bioavailability of tanimilast was found to be approximately 50%. Following intravenous administration of [14C]-tanimilast, plasma clearance was 22 L/h, the steady-state volume of distribution was 201 L, and the half-life was shorter compared to inhaled administration (14 vs 39 hours, respectively), suggesting that plasma elimination is limited by the absorption rate from the lungs. Seventy-nine percent (71% in feces; 8% in urine) of the intravenous dose was recovered in excreta as total-[14C]. [14C]-tanimilast was the major radioactive compound in plasma, whereas no recovery was observed in urine and only 0.3% was recovered in feces, indicating predominant elimination through metabolic route. Importantly, as far as no metabolites accounting for more than 10% of the circulating drug-related exposure in plasma or the administered dose in excreta were detected, no further qualification is required according to regulatory guidelines. This study design successfully characterized the absorption, distribution, and elimination of tanimilast, providing key pharmacokinetic parameters to support its clinical development and regulatory application. SIGNIFICANCE STATEMENT: This trial investigates pharmacokinetic and absorption, distribution, metabolism and excretion profile of tanimilast, an inhaled phosphodiesterase-4 inhibitor for chronic obstructive pulmonary disease and asthma. Eight male volunteers received a dose of nonradiolabeled tanimilast via Chiesi NEXThaler and a microtracer intravenous dose. Results show pivotal pharmacokinetic results for the characterization of tanimilast, excretion route and quantification of significant metabolites, facilitating streamlined clinical development and regulatory approval.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信