黄体酮对CYP3A4体外异向变构调节:大环内酯类药物时间依赖性抑制预测改善的证据。

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Metabolism and Disposition Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1124/dmd.124.001820
Luc R A Rougée, Pooja V Hegde, Kaitlin Shin, Trent L Abraham, Alec Bell, Stephen D Hall
{"title":"黄体酮对CYP3A4体外异向变构调节:大环内酯类药物时间依赖性抑制预测改善的证据。","authors":"Luc R A Rougée, Pooja V Hegde, Kaitlin Shin, Trent L Abraham, Alec Bell, Stephen D Hall","doi":"10.1124/dmd.124.001820","DOIUrl":null,"url":null,"abstract":"<p><p>Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated. The presence of PGS resulted in varied responses across the inhibitors tested. The TDI signal was eliminated for 5 inhibitors, and unaltered in the case of 1, fidaxomicin. The remaining molecules erythromycin, clarithromycin, and troleandomycin were observed to have a decrease in both potency and maximum inactivation rate ranging from 1.7- to 6.7-fold. These changes in TDI kinetics led to a >90% decrease in inactivation efficiency. To determine in vitro conditions that could reproduce in vivo inhibition, varied concentrations of PGS were incubated with clarithromycin and erythromycin. The resulting in vitro TDI kinetics were incorporated into dynamic physiologically based pharmacokinetic models to predict clinically observed interactions. The results suggested that a concentration of ∼45 μM PGS would result in TDI kinetic values that could reproduce in vivo observations and could potentially improve predictions for CYP3A4 TDI. SIGNIFICANCE STATEMENT: The impact of the allosteric heterotropic modulator progesterone on the CYP3A4 time-dependent inhibition kinetics was quantified for a set of metabolic-intermediate complex forming mechanism-based inhibitors. We identify the in vitro conditions that optimally predict time-dependent inhibition for in vivo drug-drug interactions through dynamic physiologically based pharmacokinetic modeling. The optimized assay conditions improve in vitro to in vivo translation and prediction of time-dependent inhibition.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":"53 1","pages":"100006"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterotropic allosteric modulation of CYP3A4 in vitro by progesterone: Evidence for improvement in prediction of time-dependent inhibition for macrolides.\",\"authors\":\"Luc R A Rougée, Pooja V Hegde, Kaitlin Shin, Trent L Abraham, Alec Bell, Stephen D Hall\",\"doi\":\"10.1124/dmd.124.001820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated. The presence of PGS resulted in varied responses across the inhibitors tested. The TDI signal was eliminated for 5 inhibitors, and unaltered in the case of 1, fidaxomicin. The remaining molecules erythromycin, clarithromycin, and troleandomycin were observed to have a decrease in both potency and maximum inactivation rate ranging from 1.7- to 6.7-fold. These changes in TDI kinetics led to a >90% decrease in inactivation efficiency. To determine in vitro conditions that could reproduce in vivo inhibition, varied concentrations of PGS were incubated with clarithromycin and erythromycin. The resulting in vitro TDI kinetics were incorporated into dynamic physiologically based pharmacokinetic models to predict clinically observed interactions. The results suggested that a concentration of ∼45 μM PGS would result in TDI kinetic values that could reproduce in vivo observations and could potentially improve predictions for CYP3A4 TDI. SIGNIFICANCE STATEMENT: The impact of the allosteric heterotropic modulator progesterone on the CYP3A4 time-dependent inhibition kinetics was quantified for a set of metabolic-intermediate complex forming mechanism-based inhibitors. We identify the in vitro conditions that optimally predict time-dependent inhibition for in vivo drug-drug interactions through dynamic physiologically based pharmacokinetic modeling. The optimized assay conditions improve in vitro to in vivo translation and prediction of time-dependent inhibition.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\"53 1\",\"pages\":\"100006\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.124.001820\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001820","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

对CYP3A4的时间依赖性抑制(TDI)导致的药物-药物相互作用的预测一直高估或错误预测(即假阳性)在体内观察到的相互作用。最近的研究结果表明,在体外实验中,变构调节剂黄体酮(PGS)的存在可以改变CYP3A4 TDI的体外动力学,与血红素部分相互作用的抑制剂,如代谢中间复合物形成抑制剂。研究了100 μM PGS对与代谢-中间复合物形成相关的大环内酯类分子TDI的影响。PGS的存在导致在所测试的抑制剂中产生不同的反应。5种抑制剂的TDI信号被消除,1种非达索霉素的TDI信号没有改变。剩下的红霉素、克拉霉素和罗环霉素分子的效力和最大失活率均下降了1.7- 6.7倍。TDI动力学的这些变化导致失活效率降低了约90%。将不同浓度的PGS与克拉霉素和红霉素一起培养,以确定体外条件是否能重现体内抑制作用。由此产生的体外TDI动力学被纳入基于动态生理学的药代动力学模型,以预测临床观察到的相互作用。结果表明,浓度为~ 45 μM的PGS会导致TDI的动力学值,可以再现体内观察结果,并可能改善CYP3A4 TDI的预测。意义声明:我们量化了一组基于代谢-中间复合物形成机制的抑制剂的变构异向调节剂黄体酮对CYP3A4时间依赖性抑制动力学的影响。我们通过基于动态生理的药代动力学模型确定体外条件,最佳预测体内药物-药物相互作用的时间依赖性抑制。优化后的检测条件提高了体外到体内的翻译和时间依赖性抑制的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterotropic allosteric modulation of CYP3A4 in vitro by progesterone: Evidence for improvement in prediction of time-dependent inhibition for macrolides.

Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated. The presence of PGS resulted in varied responses across the inhibitors tested. The TDI signal was eliminated for 5 inhibitors, and unaltered in the case of 1, fidaxomicin. The remaining molecules erythromycin, clarithromycin, and troleandomycin were observed to have a decrease in both potency and maximum inactivation rate ranging from 1.7- to 6.7-fold. These changes in TDI kinetics led to a >90% decrease in inactivation efficiency. To determine in vitro conditions that could reproduce in vivo inhibition, varied concentrations of PGS were incubated with clarithromycin and erythromycin. The resulting in vitro TDI kinetics were incorporated into dynamic physiologically based pharmacokinetic models to predict clinically observed interactions. The results suggested that a concentration of ∼45 μM PGS would result in TDI kinetic values that could reproduce in vivo observations and could potentially improve predictions for CYP3A4 TDI. SIGNIFICANCE STATEMENT: The impact of the allosteric heterotropic modulator progesterone on the CYP3A4 time-dependent inhibition kinetics was quantified for a set of metabolic-intermediate complex forming mechanism-based inhibitors. We identify the in vitro conditions that optimally predict time-dependent inhibition for in vivo drug-drug interactions through dynamic physiologically based pharmacokinetic modeling. The optimized assay conditions improve in vitro to in vivo translation and prediction of time-dependent inhibition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信