脊髓损伤后神经性疼痛中痛觉通路的差异神经元激活。

IF 3.6 4区 医学 Q3 CELL BIOLOGY
Ziyu He, Jun Zhang, Jia Xu, Yu Wang, Xiaolong Zheng, Wei Wang
{"title":"脊髓损伤后神经性疼痛中痛觉通路的差异神经元激活。","authors":"Ziyu He, Jun Zhang, Jia Xu, Yu Wang, Xiaolong Zheng, Wei Wang","doi":"10.1007/s10571-025-01532-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain. Additional stimuli were delivered to mimic the different peripheral sensory inputs in daily life. Following noxious rather than innocuous or no stimulation, a greater number of spinal dorsal horn (DH) neurons were activated after SCI, mainly in the deep DH. SCI facilitated the activation of excitatory but not inhibitory DH neurons. Moreover, excitatory interneurons expressing protein kinase C gamma (PKCγ) in laminae II-III, which are known to play a role in mechanical allodynia after peripheral nerve injury, responded in larger amounts to both innocuous and noxious stimulation following SCI. Accordingly, more spinal projection neurons in lamina I were activated. Within supraspinal nuclei processing pain, differentially enhanced activation in response to noxious stimulation was detected after SCI, with a significant increase in the locus coeruleus and medial thalamus, a slight increase in the periaqueductal gray and dorsal raphe, and no change in the lateral parabrachial nucleus or primary sensory cortex. These findings indicated differential hyperexcitability along the sensory neuroaxis following SCI, with a particular emphasis on the involvement of specific neuron subtypes, such as spinal PKCγ interneurons and locus coeruleus noradrenergic neurons, which may serve as crucial targets for potential therapies.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"18"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.\",\"authors\":\"Ziyu He, Jun Zhang, Jia Xu, Yu Wang, Xiaolong Zheng, Wei Wang\",\"doi\":\"10.1007/s10571-025-01532-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain. Additional stimuli were delivered to mimic the different peripheral sensory inputs in daily life. Following noxious rather than innocuous or no stimulation, a greater number of spinal dorsal horn (DH) neurons were activated after SCI, mainly in the deep DH. SCI facilitated the activation of excitatory but not inhibitory DH neurons. Moreover, excitatory interneurons expressing protein kinase C gamma (PKCγ) in laminae II-III, which are known to play a role in mechanical allodynia after peripheral nerve injury, responded in larger amounts to both innocuous and noxious stimulation following SCI. Accordingly, more spinal projection neurons in lamina I were activated. Within supraspinal nuclei processing pain, differentially enhanced activation in response to noxious stimulation was detected after SCI, with a significant increase in the locus coeruleus and medial thalamus, a slight increase in the periaqueductal gray and dorsal raphe, and no change in the lateral parabrachial nucleus or primary sensory cortex. These findings indicated differential hyperexcitability along the sensory neuroaxis following SCI, with a particular emphasis on the involvement of specific neuron subtypes, such as spinal PKCγ interneurons and locus coeruleus noradrenergic neurons, which may serve as crucial targets for potential therapies.</p>\",\"PeriodicalId\":9742,\"journal\":{\"name\":\"Cellular and Molecular Neurobiology\",\"volume\":\"45 1\",\"pages\":\"18\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10571-025-01532-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01532-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经性疼痛是脊髓损伤(SCI)后常见的并发症,严重影响患者的生活质量。由于对潜在神经过程的认识不完全,没有理想的治疗方法。为了探讨sci对伤害性回路的影响,我们分析了c-Fos蛋白的表达,作为表现低水平疼痛的大鼠挫伤模型中神经元激活的指标。额外的刺激是用来模拟日常生活中不同的外周感觉输入。在有害刺激而非无害刺激或无刺激的情况下,脊髓损伤后更多的脊髓背角(DH)神经元被激活,主要在脊髓背角深部。脊髓损伤促进了兴奋性而非抑制性DH神经元的激活。此外,在II-III层中表达蛋白激酶Cγ (PKCγ)的兴奋性中间神经元,已知在周围神经损伤后的机械性异常性痛中起作用,在脊髓损伤后对无害和有害的刺激都有更大的反应。相应的,第一层的脊髓投射神经元被激活较多。脊髓损伤后,在处理疼痛的椎管上核中,检测到对有害刺激的不同激活增强,蓝斑核和丘脑内侧显著增加,导水管周围灰质和中缝背轻微增加,外侧臂旁核和初级感觉皮层没有变化。这些发现表明,脊髓损伤后感觉神经轴上存在差异的高兴奋性,特别强调了特定神经元亚型的参与,如脊髓pkc - γ中间神经元和蓝斑去肾上腺素能神经元,它们可能是潜在治疗的关键靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain. Additional stimuli were delivered to mimic the different peripheral sensory inputs in daily life. Following noxious rather than innocuous or no stimulation, a greater number of spinal dorsal horn (DH) neurons were activated after SCI, mainly in the deep DH. SCI facilitated the activation of excitatory but not inhibitory DH neurons. Moreover, excitatory interneurons expressing protein kinase C gamma (PKCγ) in laminae II-III, which are known to play a role in mechanical allodynia after peripheral nerve injury, responded in larger amounts to both innocuous and noxious stimulation following SCI. Accordingly, more spinal projection neurons in lamina I were activated. Within supraspinal nuclei processing pain, differentially enhanced activation in response to noxious stimulation was detected after SCI, with a significant increase in the locus coeruleus and medial thalamus, a slight increase in the periaqueductal gray and dorsal raphe, and no change in the lateral parabrachial nucleus or primary sensory cortex. These findings indicated differential hyperexcitability along the sensory neuroaxis following SCI, with a particular emphasis on the involvement of specific neuron subtypes, such as spinal PKCγ interneurons and locus coeruleus noradrenergic neurons, which may serve as crucial targets for potential therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信