scSMD:一种基于自编码器的单细胞精确聚类的深度学习方法。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Xiaoxu Cui, Renkai Wu, Yinghao Liu, Peizhan Chen, Qing Chang, Pengchen Liang, Changyu He
{"title":"scSMD:一种基于自编码器的单细胞精确聚类的深度学习方法。","authors":"Xiaoxu Cui, Renkai Wu, Yinghao Liu, Peizhan Chen, Qing Chang, Pengchen Liang, Changyu He","doi":"10.1186/s12859-025-06047-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.</p><p><strong>Results: </strong>We propose the SMD deep learning model, which integrates nonlinear dimensionality reduction techniques with a porous dilated attention gate component. Built upon a convolutional autoencoder and informed by the negative binomial distribution, the SMD model efficiently captures essential cell clustering features and dynamically adjusts feature weights. Comprehensive evaluation on both public datasets and proprietary osteosarcoma data highlights the SMD model's efficacy in achieving precise classifications for single-cell data clustering, showcasing its potential for advanced transcriptomic analysis.</p><p><strong>Conclusion: </strong>This study underscores the potential of deep learning-specifically the SMD model-in advancing single-cell RNA sequencing data analysis. By integrating innovative computational techniques, the SMD model provides a powerful framework for unraveling cellular complexities, enhancing our understanding of biological processes, and elucidating disease mechanisms. The code is available from  https://github.com/xiaoxuc/scSMD .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"33"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780796/pdf/","citationCount":"0","resultStr":"{\"title\":\"scSMD: a deep learning method for accurate clustering of single cells based on auto-encoder.\",\"authors\":\"Xiaoxu Cui, Renkai Wu, Yinghao Liu, Peizhan Chen, Qing Chang, Pengchen Liang, Changyu He\",\"doi\":\"10.1186/s12859-025-06047-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.</p><p><strong>Results: </strong>We propose the SMD deep learning model, which integrates nonlinear dimensionality reduction techniques with a porous dilated attention gate component. Built upon a convolutional autoencoder and informed by the negative binomial distribution, the SMD model efficiently captures essential cell clustering features and dynamically adjusts feature weights. Comprehensive evaluation on both public datasets and proprietary osteosarcoma data highlights the SMD model's efficacy in achieving precise classifications for single-cell data clustering, showcasing its potential for advanced transcriptomic analysis.</p><p><strong>Conclusion: </strong>This study underscores the potential of deep learning-specifically the SMD model-in advancing single-cell RNA sequencing data analysis. By integrating innovative computational techniques, the SMD model provides a powerful framework for unraveling cellular complexities, enhancing our understanding of biological processes, and elucidating disease mechanisms. The code is available from  https://github.com/xiaoxuc/scSMD .</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"33\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06047-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06047-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:单细胞RNA测序(scRNA-seq)通过对细胞异质性、发育过程和疾病机制提供新的见解,改变了生物学研究。随着scRNA-seq技术的进步,其在现代生物学中的作用变得越来越重要。本研究探讨了深度学习在单细胞数据聚类中的应用,特别关注于管理稀疏的高维数据。结果:我们提出了SMD深度学习模型,该模型将非线性降维技术与多孔膨胀注意门组件相结合。SMD模型建立在卷积自编码器的基础上,根据负二项分布的信息,有效地捕获基本的细胞聚类特征,并动态调整特征权重。对公共数据集和专有骨肉瘤数据的综合评估突出了SMD模型在实现单细胞数据聚类精确分类方面的功效,展示了其在高级转录组学分析方面的潜力。结论:该研究强调了深度学习(特别是SMD模型)在推进单细胞RNA测序数据分析中的潜力。通过整合创新的计算技术,SMD模型为揭示细胞复杂性、增强我们对生物过程的理解和阐明疾病机制提供了一个强大的框架。该代码可从https://github.com/xiaoxuc/scSMD获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scSMD: a deep learning method for accurate clustering of single cells based on auto-encoder.

Background: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.

Results: We propose the SMD deep learning model, which integrates nonlinear dimensionality reduction techniques with a porous dilated attention gate component. Built upon a convolutional autoencoder and informed by the negative binomial distribution, the SMD model efficiently captures essential cell clustering features and dynamically adjusts feature weights. Comprehensive evaluation on both public datasets and proprietary osteosarcoma data highlights the SMD model's efficacy in achieving precise classifications for single-cell data clustering, showcasing its potential for advanced transcriptomic analysis.

Conclusion: This study underscores the potential of deep learning-specifically the SMD model-in advancing single-cell RNA sequencing data analysis. By integrating innovative computational techniques, the SMD model provides a powerful framework for unraveling cellular complexities, enhancing our understanding of biological processes, and elucidating disease mechanisms. The code is available from  https://github.com/xiaoxuc/scSMD .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信