酵母衍生空泡对人肺成纤维细胞过氧化氢诱导的衰老标志物的抑制作用。

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Su-Min Lee , Eunsu Seo , Yang-Hoon Kim , Jiho Min
{"title":"酵母衍生空泡对人肺成纤维细胞过氧化氢诱导的衰老标志物的抑制作用。","authors":"Su-Min Lee ,&nbsp;Eunsu Seo ,&nbsp;Yang-Hoon Kim ,&nbsp;Jiho Min","doi":"10.1016/j.bbamcr.2025.119907","DOIUrl":null,"url":null,"abstract":"<div><div>Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, <em>S. cerevisiae</em>-derived vacuoles degrade macromolecules using hydrolytic enzymes and mitigate these aging effects. Our study assessed the anti-aging potential of yeast vacuoles in human lung fibroblasts treated with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Pretreatment with vacuoles at concentrations of 1, 5, and 10 μg/ml decreased SA-β-gal-positive cell counts, reduced mRNA levels of senescence markers (p21 and p53), and senescence-associated secretory phenotype (SASP) factors (IL-6 and TNF-α) compared to controls treated with H<sub>2</sub>O<sub>2</sub> alone. Additionally, these vacuoles significantly diminished intracellular reactive oxygen species (ROS) levels, indicating their potential as effective lung anti-senescence agents. This study suggests that yeast vacuoles could be used as a preventive measure against changes associated with lung aging.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 3","pages":"Article 119907"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts\",\"authors\":\"Su-Min Lee ,&nbsp;Eunsu Seo ,&nbsp;Yang-Hoon Kim ,&nbsp;Jiho Min\",\"doi\":\"10.1016/j.bbamcr.2025.119907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, <em>S. cerevisiae</em>-derived vacuoles degrade macromolecules using hydrolytic enzymes and mitigate these aging effects. Our study assessed the anti-aging potential of yeast vacuoles in human lung fibroblasts treated with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Pretreatment with vacuoles at concentrations of 1, 5, and 10 μg/ml decreased SA-β-gal-positive cell counts, reduced mRNA levels of senescence markers (p21 and p53), and senescence-associated secretory phenotype (SASP) factors (IL-6 and TNF-α) compared to controls treated with H<sub>2</sub>O<sub>2</sub> alone. Additionally, these vacuoles significantly diminished intracellular reactive oxygen species (ROS) levels, indicating their potential as effective lung anti-senescence agents. This study suggests that yeast vacuoles could be used as a preventive measure against changes associated with lung aging.</div></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":\"1872 3\",\"pages\":\"Article 119907\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488925000126\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000126","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在溶酶体碱化等因素的影响下,衰老显著促进了各种组织的衰老,溶酶体碱化破坏了自噬通量并积累了有毒物质。这种破坏导致氧化应激、溶酶体渗透性增加、细胞衰老和凋亡。与哺乳动物溶酶体类似,酿酒酵母衍生的液泡利用水解酶降解大分子并减轻这些老化效应。我们的研究评估了过氧化氢(H2O2)处理的人肺成纤维细胞中酵母液泡的抗衰老潜力。与H2O2单独处理的对照组相比,1、5和10 μg/ml空泡预处理降低了SA-β-gal阳性细胞计数,降低了衰老标志物(p21和p53) mRNA水平以及衰老相关分泌表型(SASP)因子(IL-6和TNF-α)水平。此外,这些空泡显著降低细胞内活性氧(ROS)水平,表明它们可能是有效的肺抗衰老药物。本研究提示酵母液泡可作为预防肺部衰老相关变化的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts

Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts
Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S. cerevisiae-derived vacuoles degrade macromolecules using hydrolytic enzymes and mitigate these aging effects. Our study assessed the anti-aging potential of yeast vacuoles in human lung fibroblasts treated with hydrogen peroxide (H2O2). Pretreatment with vacuoles at concentrations of 1, 5, and 10 μg/ml decreased SA-β-gal-positive cell counts, reduced mRNA levels of senescence markers (p21 and p53), and senescence-associated secretory phenotype (SASP) factors (IL-6 and TNF-α) compared to controls treated with H2O2 alone. Additionally, these vacuoles significantly diminished intracellular reactive oxygen species (ROS) levels, indicating their potential as effective lung anti-senescence agents. This study suggests that yeast vacuoles could be used as a preventive measure against changes associated with lung aging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信