n -乙酰转移酶10抑制剂[11C]重塑蛋白的合成及小鼠正电子发射断层扫描初步研究。

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Rui Luo, Yiding Zhang, Katsushi Kumata, Lin Xie, Yusuke Kurihara, Masanao Ogawa, Tomomi Kokufuta, Nobuki Nengaki, Feng Wang, Ming-Rong R. Zhang
{"title":"n -乙酰转移酶10抑制剂[11C]重塑蛋白的合成及小鼠正电子发射断层扫描初步研究。","authors":"Rui Luo,&nbsp;Yiding Zhang,&nbsp;Katsushi Kumata,&nbsp;Lin Xie,&nbsp;Yusuke Kurihara,&nbsp;Masanao Ogawa,&nbsp;Tomomi Kokufuta,&nbsp;Nobuki Nengaki,&nbsp;Feng Wang,&nbsp;Ming-Rong R. Zhang","doi":"10.1186/s41181-025-00330-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>4-(4-Cyanophenyl)-2-(2-cyclopentylidenehydrazinyl)thiazole (remodelin) is a potent <i>N</i>-acetyltransferase 10 (NAT10) inhibitor. This compound inhibits tumors and weakens tumor resistance to antitumor drugs. Moreover, remodelin has been found to enhance healthspan in an animal model of the human accelerated ageing syndrome. In this study, we synthesized C-11-labelled remodelin ([<sup>11</sup>C]remodelin) for the first time as a positron emission tomography (PET) probe and assessed its biodistribution in mice using PET.</p><h3>Results</h3><p>[<sup>11</sup>C]Remodelin was synthesized by the reaction of a boron ester precursor (<b>1</b>) with hydrogen [<sup>11</sup>C]cyanide, which was prepared from the cyclotron-produced [<sup>11</sup>C]carbon dioxide via [<sup>11</sup>C]methane. The decay-corrected radiochemical yield of [<sup>11</sup>C]remodelin was 6.2 ± 2.3% (<i>n</i> = 20, based on [<sup>11</sup>C]carbon dioxide) with a synthesis time of 45 min and radiochemical purity of &gt; 90%. A PET study with [<sup>11</sup>C]remodelin showed high uptake of radioactivity in the heart, liver, and small intestine of mice. The metabolite analysis indicated moderate metabolism of [<sup>11</sup>C]remodelin in the heart.</p><h3>Conclusions</h3><p>In the present study, we successfully synthesized [<sup>11</sup>C]remodelin and assessed its biodistribution of radioactivity in the mouse organs and tissues with PET. We are planning to prepare tumor and inflammatory models in which overexpression of NAT10 is possibly induced and conduct PET imaging for these animal models with [<sup>11</sup>C]remodelin to elucidate the relationship between NAT10 and diseases.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785860/pdf/","citationCount":"0","resultStr":"{\"title\":\"The N-acetyltransferase 10 inhibitor [11C]remodelin: synthesis and preliminary positron emission tomography study in mice\",\"authors\":\"Rui Luo,&nbsp;Yiding Zhang,&nbsp;Katsushi Kumata,&nbsp;Lin Xie,&nbsp;Yusuke Kurihara,&nbsp;Masanao Ogawa,&nbsp;Tomomi Kokufuta,&nbsp;Nobuki Nengaki,&nbsp;Feng Wang,&nbsp;Ming-Rong R. Zhang\",\"doi\":\"10.1186/s41181-025-00330-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>4-(4-Cyanophenyl)-2-(2-cyclopentylidenehydrazinyl)thiazole (remodelin) is a potent <i>N</i>-acetyltransferase 10 (NAT10) inhibitor. This compound inhibits tumors and weakens tumor resistance to antitumor drugs. Moreover, remodelin has been found to enhance healthspan in an animal model of the human accelerated ageing syndrome. In this study, we synthesized C-11-labelled remodelin ([<sup>11</sup>C]remodelin) for the first time as a positron emission tomography (PET) probe and assessed its biodistribution in mice using PET.</p><h3>Results</h3><p>[<sup>11</sup>C]Remodelin was synthesized by the reaction of a boron ester precursor (<b>1</b>) with hydrogen [<sup>11</sup>C]cyanide, which was prepared from the cyclotron-produced [<sup>11</sup>C]carbon dioxide via [<sup>11</sup>C]methane. The decay-corrected radiochemical yield of [<sup>11</sup>C]remodelin was 6.2 ± 2.3% (<i>n</i> = 20, based on [<sup>11</sup>C]carbon dioxide) with a synthesis time of 45 min and radiochemical purity of &gt; 90%. A PET study with [<sup>11</sup>C]remodelin showed high uptake of radioactivity in the heart, liver, and small intestine of mice. The metabolite analysis indicated moderate metabolism of [<sup>11</sup>C]remodelin in the heart.</p><h3>Conclusions</h3><p>In the present study, we successfully synthesized [<sup>11</sup>C]remodelin and assessed its biodistribution of radioactivity in the mouse organs and tissues with PET. We are planning to prepare tumor and inflammatory models in which overexpression of NAT10 is possibly induced and conduct PET imaging for these animal models with [<sup>11</sup>C]remodelin to elucidate the relationship between NAT10 and diseases.</p></div>\",\"PeriodicalId\":534,\"journal\":{\"name\":\"EJNMMI Radiopharmacy and Chemistry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Radiopharmacy and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41181-025-00330-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-025-00330-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

背景:4-(4- cyanophenyl)-2-(2-cyclopentylidenehydrazinyl)噻唑(remodeling in)是一种有效的n -乙酰基转移酶10 (NAT10)抑制剂。该化合物抑制肿瘤,削弱肿瘤对抗肿瘤药物的耐药性。此外,在人类加速衰老综合症的动物模型中,重塑蛋白被发现可以提高健康寿命。本研究首次合成了c -11标记的重塑蛋白([11C] remodeling In)作为正电子发射断层扫描(PET)探针,并利用PET评估了其在小鼠体内的生物分布。结果:硼酯前体(1)与[11C]氰化氢反应合成了[11C]重塑素。[11C]氰化氢是由[11C]甲烷经回旋生成的[11C]二氧化碳合成的。[11C]重塑蛋白的衰变校正放射化学产率为6.2±2.3% (n = 20,基于[11C]二氧化碳),合成时间为45 min,放射化学纯度为> 90%。PET研究显示[11C]重塑蛋白在小鼠的心脏、肝脏和小肠中具有较高的放射性吸收。代谢物分析显示[11C]重塑蛋白在心脏有中等代谢。结论:本研究成功合成了[11C]重塑蛋白,并利用PET评价了其在小鼠脏器组织中的生物放射性分布。我们计划制备可能诱导NAT10过表达的肿瘤和炎症模型,并利用[11C]重塑蛋白对这些动物模型进行PET成像,阐明NAT10与疾病的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The N-acetyltransferase 10 inhibitor [11C]remodelin: synthesis and preliminary positron emission tomography study in mice

Background

4-(4-Cyanophenyl)-2-(2-cyclopentylidenehydrazinyl)thiazole (remodelin) is a potent N-acetyltransferase 10 (NAT10) inhibitor. This compound inhibits tumors and weakens tumor resistance to antitumor drugs. Moreover, remodelin has been found to enhance healthspan in an animal model of the human accelerated ageing syndrome. In this study, we synthesized C-11-labelled remodelin ([11C]remodelin) for the first time as a positron emission tomography (PET) probe and assessed its biodistribution in mice using PET.

Results

[11C]Remodelin was synthesized by the reaction of a boron ester precursor (1) with hydrogen [11C]cyanide, which was prepared from the cyclotron-produced [11C]carbon dioxide via [11C]methane. The decay-corrected radiochemical yield of [11C]remodelin was 6.2 ± 2.3% (n = 20, based on [11C]carbon dioxide) with a synthesis time of 45 min and radiochemical purity of > 90%. A PET study with [11C]remodelin showed high uptake of radioactivity in the heart, liver, and small intestine of mice. The metabolite analysis indicated moderate metabolism of [11C]remodelin in the heart.

Conclusions

In the present study, we successfully synthesized [11C]remodelin and assessed its biodistribution of radioactivity in the mouse organs and tissues with PET. We are planning to prepare tumor and inflammatory models in which overexpression of NAT10 is possibly induced and conduct PET imaging for these animal models with [11C]remodelin to elucidate the relationship between NAT10 and diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信