海胆样共价有机框架/TiO2异质结构增强光催化CO2转化。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-05-01 Epub Date: 2025-01-27 DOI:10.1016/j.jcis.2025.01.231
Xin Zhao, Qianxi Liu, Qi Li, Yihang Yin, Mang Zheng, Fanqi Luo, Huiquan Gu, Baojiang Jiang
{"title":"海胆样共价有机框架/TiO2异质结构增强光催化CO2转化。","authors":"Xin Zhao, Qianxi Liu, Qi Li, Yihang Yin, Mang Zheng, Fanqi Luo, Huiquan Gu, Baojiang Jiang","doi":"10.1016/j.jcis.2025.01.231","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic reduction of CO<sub>2</sub> to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly. To further expand the application scope of TP-COF, a heterojunction structure was constructed by in-situ growth of TP-COF onto TiO<sub>2</sub> to form TiO<sub>2</sub>@TP-COF. In the photocatalytic CO<sub>2</sub> reaction of TiO<sub>2</sub>@TP-COF composites, TiO<sub>2</sub> acts as a reduction site to reduce CO<sub>2</sub> to CO, and triethanolamine (TEOA) acts as a hole-sacrificing reagent. It was demonstrated by in situ X-ray photoelectron spectroscopy (XPS) that the direction of electron transfer in the TiO<sub>2</sub>@TP-COF composites flowed from TP-COF to TiO<sub>2</sub>. Meanwhile, TEOA on TP-COF was oxidized to consume holes and produce protons for the reduction of CO<sub>2</sub>. Combining the advantages of organic and inorganic semiconductors, the heterojunction structure effectively improves the photocatalytic properties of TiO<sub>2</sub>@TP-COF under visible light irradiation. TiO<sub>2</sub>@TP-COF demonstrates a remarkable photocatalytic CO<sub>2</sub> reduction rate of 133.37 μmol/g/h at λ = 420 nm, which is 3.19 and 2.88 times higher than that of TP-COF and TiO<sub>2</sub>, respectively, while exhibiting a selectivity of 73 % for CO. This convenient method of synthesizing TiO<sub>2</sub>@TP-COF catalysts will open up new perspectives for future COF-based materials.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"1068-1076"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sea urchin-like covalent organic frameworks/TiO<sub>2</sub> heterostructure for enhanced photocatalytic CO<sub>2</sub> conversion.\",\"authors\":\"Xin Zhao, Qianxi Liu, Qi Li, Yihang Yin, Mang Zheng, Fanqi Luo, Huiquan Gu, Baojiang Jiang\",\"doi\":\"10.1016/j.jcis.2025.01.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photocatalytic reduction of CO<sub>2</sub> to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly. To further expand the application scope of TP-COF, a heterojunction structure was constructed by in-situ growth of TP-COF onto TiO<sub>2</sub> to form TiO<sub>2</sub>@TP-COF. In the photocatalytic CO<sub>2</sub> reaction of TiO<sub>2</sub>@TP-COF composites, TiO<sub>2</sub> acts as a reduction site to reduce CO<sub>2</sub> to CO, and triethanolamine (TEOA) acts as a hole-sacrificing reagent. It was demonstrated by in situ X-ray photoelectron spectroscopy (XPS) that the direction of electron transfer in the TiO<sub>2</sub>@TP-COF composites flowed from TP-COF to TiO<sub>2</sub>. Meanwhile, TEOA on TP-COF was oxidized to consume holes and produce protons for the reduction of CO<sub>2</sub>. Combining the advantages of organic and inorganic semiconductors, the heterojunction structure effectively improves the photocatalytic properties of TiO<sub>2</sub>@TP-COF under visible light irradiation. TiO<sub>2</sub>@TP-COF demonstrates a remarkable photocatalytic CO<sub>2</sub> reduction rate of 133.37 μmol/g/h at λ = 420 nm, which is 3.19 and 2.88 times higher than that of TP-COF and TiO<sub>2</sub>, respectively, while exhibiting a selectivity of 73 % for CO. This convenient method of synthesizing TiO<sub>2</sub>@TP-COF catalysts will open up new perspectives for future COF-based materials.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"685 \",\"pages\":\"1068-1076\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.01.231\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化还原CO2为有价化学品是解决环境问题和能源危机的有效策略。共价有机框架(COFs)是一种新兴材料,以其优异的多种性能而闻名,尽管受到特殊合成方法的限制,包括高温(120°C)和惰性气体气氛的必要性。本文优化了一种在室温和空气条件下,以对苯二胺(Pa)和2,4,6-三甲酰基间苯三酚(Tp)为原料,通过静电自组装合成TpPa-COF (Tp - cof)的新方法。为了进一步扩大TP-COF的应用范围,将TP-COF原位生长在TiO2上形成异质结结构,形成TiO2@TP-COF。在TiO2@TP-COF复合材料的光催化CO2反应中,TiO2作为还原位点将CO2还原为CO,三乙醇胺(TEOA)作为空穴牺牲试剂。原位x射线光电子能谱(XPS)证实TiO2@TP-COF复合材料的电子转移方向为TP-COF向TiO2转移。同时,TP-COF上的TEOA被氧化消耗空穴,产生质子还原CO2。结合有机和无机半导体的优点,异质结结构有效地提高了TiO2@TP-COF在可见光照射下的光催化性能。TiO2@TP-COF在λ = 420 nm处光催化CO2还原率为133.37 μmol/g/h,分别是TP-COF和TiO2的3.19倍和2.88倍,对CO的选择性为73%。这种简便的合成TiO2@TP-COF催化剂的方法将为未来的cof基材料开辟新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sea urchin-like covalent organic frameworks/TiO2 heterostructure for enhanced photocatalytic CO2 conversion.

Photocatalytic reduction of CO2 to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly. To further expand the application scope of TP-COF, a heterojunction structure was constructed by in-situ growth of TP-COF onto TiO2 to form TiO2@TP-COF. In the photocatalytic CO2 reaction of TiO2@TP-COF composites, TiO2 acts as a reduction site to reduce CO2 to CO, and triethanolamine (TEOA) acts as a hole-sacrificing reagent. It was demonstrated by in situ X-ray photoelectron spectroscopy (XPS) that the direction of electron transfer in the TiO2@TP-COF composites flowed from TP-COF to TiO2. Meanwhile, TEOA on TP-COF was oxidized to consume holes and produce protons for the reduction of CO2. Combining the advantages of organic and inorganic semiconductors, the heterojunction structure effectively improves the photocatalytic properties of TiO2@TP-COF under visible light irradiation. TiO2@TP-COF demonstrates a remarkable photocatalytic CO2 reduction rate of 133.37 μmol/g/h at λ = 420 nm, which is 3.19 and 2.88 times higher than that of TP-COF and TiO2, respectively, while exhibiting a selectivity of 73 % for CO. This convenient method of synthesizing TiO2@TP-COF catalysts will open up new perspectives for future COF-based materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信