高性能锌-空气电池的原子级锡调节。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Journal of the American Chemical Society Pub Date : 2025-02-12 Epub Date: 2025-01-30 DOI:10.1021/jacs.4c12601
Yunrui Li, Jiaqi Xu, Fan Lan, Yao Wang, Hairong Jiang, Ping Zhu, Xueke Wu, Ya Huang, Run Li, Qinyuan Jiang, Yanlong Zhao, Ruina Liu, Longgui Zhang, Rufan Zhang
{"title":"高性能锌-空气电池的原子级锡调节。","authors":"Yunrui Li, Jiaqi Xu, Fan Lan, Yao Wang, Hairong Jiang, Ping Zhu, Xueke Wu, Ya Huang, Run Li, Qinyuan Jiang, Yanlong Zhao, Ruina Liu, Longgui Zhang, Rufan Zhang","doi":"10.1021/jacs.4c12601","DOIUrl":null,"url":null,"abstract":"<p><p>The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO<sub>2</sub> trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO<sub>2</sub> (for OER) to enhance both ORR and OER performances. Both theoretical calculations and advanced dynamic monitoring experiments revealed that the auxiliary Sn effectively regulated the atomic/electronic environment of Ru and Co dual-active sites, which optimized the *OOH/*OH adsorption behavior and promoted the release of the final products, thus breaking the reaction limits. Therefore, the as-designed Sn-Co/RuO<sub>2</sub> catalysts exhibited superb bifunctional performance with an oxygen potential difference (Δ<i>E</i>) of 0.628 V and negligible activity degradation after 200,000 (ORR) or 20,000 (OER) CV cycles. The a-r-ZABs based on the Sn-Co/RuO<sub>2</sub> catalyst exhibited a higher performance at a wide temperature range of -30 to 65 °C. They demonstrated an ultralong lifespan of 138 days (20,000 cycles) at 5 mA cm<sup>-2</sup>, 39.7 times higher than that of Pt/C + IrO<sub>2</sub> coupled catalysts at a low temperature of -20 °C. Additionally, they maintained an initial power density of 85.8% after long-term tests, significantly outperforming previously reported catalysts. More importantly, the a-r-ZABs also showed excellent stability of 766.45 h (about 4598 cycles) at a high current density of 10 mA cm<sup>-2</sup>.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"4833-4843"},"PeriodicalIF":15.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-Level Tin Regulation for High-Performance Zinc-Air Batteries.\",\"authors\":\"Yunrui Li, Jiaqi Xu, Fan Lan, Yao Wang, Hairong Jiang, Ping Zhu, Xueke Wu, Ya Huang, Run Li, Qinyuan Jiang, Yanlong Zhao, Ruina Liu, Longgui Zhang, Rufan Zhang\",\"doi\":\"10.1021/jacs.4c12601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO<sub>2</sub> trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO<sub>2</sub> (for OER) to enhance both ORR and OER performances. Both theoretical calculations and advanced dynamic monitoring experiments revealed that the auxiliary Sn effectively regulated the atomic/electronic environment of Ru and Co dual-active sites, which optimized the *OOH/*OH adsorption behavior and promoted the release of the final products, thus breaking the reaction limits. Therefore, the as-designed Sn-Co/RuO<sub>2</sub> catalysts exhibited superb bifunctional performance with an oxygen potential difference (Δ<i>E</i>) of 0.628 V and negligible activity degradation after 200,000 (ORR) or 20,000 (OER) CV cycles. The a-r-ZABs based on the Sn-Co/RuO<sub>2</sub> catalyst exhibited a higher performance at a wide temperature range of -30 to 65 °C. They demonstrated an ultralong lifespan of 138 days (20,000 cycles) at 5 mA cm<sup>-2</sup>, 39.7 times higher than that of Pt/C + IrO<sub>2</sub> coupled catalysts at a low temperature of -20 °C. Additionally, they maintained an initial power density of 85.8% after long-term tests, significantly outperforming previously reported catalysts. More importantly, the a-r-ZABs also showed excellent stability of 766.45 h (about 4598 cycles) at a high current density of 10 mA cm<sup>-2</sup>.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"4833-4843\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c12601\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12601","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧还原反应(ORR)和氧析反应(OER)之间的平衡是设计高性能锌-空气水电池(a-r- zabs)的一个挑战,因为反应动力学缓慢,反应要求不同。准确控制原子和电子结构是合理设计高效双功能氧电催化剂的关键。本研究利用双活性位点和锡(Sn)调控策略设计了一种Sn-Co/RuO2三金属氧化物,通过将Co(用于ORR)和辅助Sn分散到RuO2(用于OER)的近表面和表面来提高ORR和OER性能。理论计算和先进的动态监测实验均表明,助剂Sn有效地调节了Ru和Co双活性位点的原子/电子环境,优化了*OOH/*OH的吸附行为,促进了最终产物的释放,从而突破了反应极限。因此,设计的n- co /RuO2催化剂具有优异的双功能性能,氧电位差(ΔE)为0.628 V,在200,000 (ORR)或20,000 (OER) CV循环后活性降解可以忽略。基于Sn-Co/RuO2催化剂的a-r- zabs在-30 ~ 65℃的宽温度范围内表现出较高的性能。在5毫安cm-2下,他们展示了138天(20,000次循环)的超长寿命,比Pt/C + IrO2偶联催化剂在-20°C低温下的寿命高39.7倍。此外,经过长期测试,它们的初始功率密度保持在85.8%,显著优于之前报道的催化剂。更重要的是,a-r- zabs在10 mA cm-2的高电流密度下也表现出了766.45 h(约4598次循环)的优异稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomic-Level Tin Regulation for High-Performance Zinc-Air Batteries.

Atomic-Level Tin Regulation for High-Performance Zinc-Air Batteries.

The trade-off between the performances of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a challenge in designing high-performance aqueous rechargeable zinc-air batteries (a-r-ZABs) due to sluggish kinetics and differing reaction requirements. Accurate control of the atomic and electronic structures is crucial for the rational design of efficient bifunctional oxygen electrocatalysts. Herein, we designed a Sn-Co/RuO2 trimetallic oxide utilizing dual-active sites and tin (Sn) regulation strategy by dispersing Co (for ORR) and auxiliary Sn into the near-surface and surface of RuO2 (for OER) to enhance both ORR and OER performances. Both theoretical calculations and advanced dynamic monitoring experiments revealed that the auxiliary Sn effectively regulated the atomic/electronic environment of Ru and Co dual-active sites, which optimized the *OOH/*OH adsorption behavior and promoted the release of the final products, thus breaking the reaction limits. Therefore, the as-designed Sn-Co/RuO2 catalysts exhibited superb bifunctional performance with an oxygen potential difference (ΔE) of 0.628 V and negligible activity degradation after 200,000 (ORR) or 20,000 (OER) CV cycles. The a-r-ZABs based on the Sn-Co/RuO2 catalyst exhibited a higher performance at a wide temperature range of -30 to 65 °C. They demonstrated an ultralong lifespan of 138 days (20,000 cycles) at 5 mA cm-2, 39.7 times higher than that of Pt/C + IrO2 coupled catalysts at a low temperature of -20 °C. Additionally, they maintained an initial power density of 85.8% after long-term tests, significantly outperforming previously reported catalysts. More importantly, the a-r-ZABs also showed excellent stability of 766.45 h (about 4598 cycles) at a high current density of 10 mA cm-2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信