丝状真菌新菌株驯化的思考。

IF 3.9 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2025-02-21 Epub Date: 2025-01-30 DOI:10.1021/acssynbio.4c00672
Randi M Pullen, Stephen R Decker, Venkataramanan Subramanian, Meaghan J Adler, Alexander V Tobias, Matthew Perisin, Christian J Sund, Matthew D Servinsky, Mark T Kozlowski
{"title":"丝状真菌新菌株驯化的思考。","authors":"Randi M Pullen, Stephen R Decker, Venkataramanan Subramanian, Meaghan J Adler, Alexander V Tobias, Matthew Perisin, Christian J Sund, Matthew D Servinsky, Mark T Kozlowski","doi":"10.1021/acssynbio.4c00672","DOIUrl":null,"url":null,"abstract":"<p><p>Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"343-362"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852223/pdf/","citationCount":"0","resultStr":"{\"title\":\"Considerations for Domestication of Novel Strains of Filamentous Fungi.\",\"authors\":\"Randi M Pullen, Stephen R Decker, Venkataramanan Subramanian, Meaghan J Adler, Alexander V Tobias, Matthew Perisin, Christian J Sund, Matthew D Servinsky, Mark T Kozlowski\",\"doi\":\"10.1021/acssynbio.4c00672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"343-362\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852223/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00672\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00672","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

真菌,尤其是丝状真菌,是一种研究相对不足的生物技术上有用的资源,具有令人难以置信的商业应用潜力。这些多细胞真核生物长期以来一直因其天然生产有用的商品化学品和蛋白质而被开发,例如用于淀粉加工、洗涤剂、食品和饲料生产、制浆造纸和生物燃料生产的酶。丝状真菌使用多种原料的能力是另一个关键优势。作为基础生物,丝状真菌可以表达原核和真核起源的细胞机制、代谢和信号转导途径。它们的基因组中充满了可以用于生物技术应用的新遗传元素和代谢过程。合成生物学工具正变得廉价、模块化和可扩展,而系统生物学开始提供设计日益复杂的合成系统所需的理解水平。这篇综述涵盖了丝状真菌研究的挑战,并提供了利用真菌作为微生物细胞工厂所需的方法的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Considerations for Domestication of Novel Strains of Filamentous Fungi.

Considerations for Domestication of Novel Strains of Filamentous Fungi.

Considerations for Domestication of Novel Strains of Filamentous Fungi.

Considerations for Domestication of Novel Strains of Filamentous Fungi.

Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信