人4-氧-l-脯氨酸还原酶催化的动力学和热力学表征。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-02-18 Epub Date: 2025-01-30 DOI:10.1021/acs.biochem.4c00721
Ennio Pečaver, Greice M Zickuhr, Teresa F G Machado, David J Harrison, Rafael G da Silva
{"title":"人4-氧-l-脯氨酸还原酶催化的动力学和热力学表征。","authors":"Ennio Pečaver, Greice M Zickuhr, Teresa F G Machado, David J Harrison, Rafael G da Silva","doi":"10.1021/acs.biochem.4c00721","DOIUrl":null,"url":null,"abstract":"<p><p>The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic (<i>R</i>)-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to <i>cis</i>-4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction. Haldane relationships show the reaction equilibrium strongly favors the formation of <i>cis</i>-4-hydroxy-l-proline. Stereospecific deuteration of NADH C4 coupled with mass spectrometry analysis of the reaction established that the pro<i>-S</i> hydrogen is transferred. NADH is co-purified with the enzyme, and a binding kinetics competition assays with NAD<sup>+</sup> defined dissociation rate constants for NADH of 0.13 s<sup>-1</sup> at 5 °C and 7.2 s<sup>-1</sup> at 25 °C. Isothermal titration calorimetry at 25 °C defined equilibrium dissociation constants of 0.48 and 29 μM for the BDH2:NADH and BDH2:NAD<sup>+</sup> complexes, respectively. Differential scanning fluorimetry showed BDH2 is highly thermostabilized by NADH and NAD<sup>+</sup>. The <i>k</i><sub>cat</sub>/<i>K</i><sub>M</sub> pH-rate profile indicates that a group with a p<i>K</i><sub>a</sub> of 7.3 and possibly another with a p<i>K</i><sub>a</sub> of 8.7 must be deprotonated and protonated, respectively, for maximum binding of 4-oxo-l-proline and/or catalysis, while the <i>k</i><sub>cat</sub> profile is largely insensitive to pH in the pH range used. The single-turnover rate constant is only 2-fold higher than <i>k</i><sub>cat</sub>. This agrees with a pre-steady-state burst of substrate consumption, suggesting that a step after chemistry, possibly product release, contributes to limit <i>k</i><sub>cat</sub>. A modest solvent viscosity effect on <i>k</i><sub>cat</sub> indicates that this step is only partially diffusional. Taken together, these data suggest chemistry does not limit the reaction rate but may contribute to it.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"860-870"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840923/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kinetic and Thermodynamic Characterization of Human 4-Oxo-l-proline Reductase Catalysis.\",\"authors\":\"Ennio Pečaver, Greice M Zickuhr, Teresa F G Machado, David J Harrison, Rafael G da Silva\",\"doi\":\"10.1021/acs.biochem.4c00721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic (<i>R</i>)-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to <i>cis</i>-4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction. Haldane relationships show the reaction equilibrium strongly favors the formation of <i>cis</i>-4-hydroxy-l-proline. Stereospecific deuteration of NADH C4 coupled with mass spectrometry analysis of the reaction established that the pro<i>-S</i> hydrogen is transferred. NADH is co-purified with the enzyme, and a binding kinetics competition assays with NAD<sup>+</sup> defined dissociation rate constants for NADH of 0.13 s<sup>-1</sup> at 5 °C and 7.2 s<sup>-1</sup> at 25 °C. Isothermal titration calorimetry at 25 °C defined equilibrium dissociation constants of 0.48 and 29 μM for the BDH2:NADH and BDH2:NAD<sup>+</sup> complexes, respectively. Differential scanning fluorimetry showed BDH2 is highly thermostabilized by NADH and NAD<sup>+</sup>. The <i>k</i><sub>cat</sub>/<i>K</i><sub>M</sub> pH-rate profile indicates that a group with a p<i>K</i><sub>a</sub> of 7.3 and possibly another with a p<i>K</i><sub>a</sub> of 8.7 must be deprotonated and protonated, respectively, for maximum binding of 4-oxo-l-proline and/or catalysis, while the <i>k</i><sub>cat</sub> profile is largely insensitive to pH in the pH range used. The single-turnover rate constant is only 2-fold higher than <i>k</i><sub>cat</sub>. This agrees with a pre-steady-state burst of substrate consumption, suggesting that a step after chemistry, possibly product release, contributes to limit <i>k</i><sub>cat</sub>. A modest solvent viscosity effect on <i>k</i><sub>cat</sub> indicates that this step is only partially diffusional. Taken together, these data suggest chemistry does not limit the reaction rate but may contribute to it.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"860-870\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840923/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00721\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00721","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

4-氧-l-脯氨酸还原酶(BDH2)最近在人类中被发现。BDH2,以前被认为是胞质(R)-3-羟基丁酸脱氢酶,实际上催化nadh依赖的4-氧-l-脯氨酸还原为顺-4-羟基-l-脯氨酸,一种已知具有抗癌活性的化合物。在这里,我们提供了bdh2催化反应的初步机理表征。霍尔丹关系表明,反应平衡强烈地有利于顺-4-羟基-l-脯氨酸的生成。NADH C4的立体定向氘化反应与质谱分析相结合,证实了前s氢被转移。NADH与酶共纯化,结合动力学竞争测定与NAD+定义的NADH解离速率常数为0.13 s-1在5°C和7.2 s-1在25°C。25°C等温滴定量热法确定BDH2:NADH和BDH2:NAD+配合物的平衡解离常数分别为0.48和29 μM。差示扫描荧光法显示BDH2被NADH和NAD+高度热稳定。kcat/KM pH速率谱图表明,pKa为7.3的基团和pKa为8.7的基团必须分别去质子化和质子化,才能最大限度地结合4-氧-l-脯氨酸和/或催化,而kcat谱图在使用的pH范围内对pH不敏感。单次周转率常数仅比kcat高2倍。这与底物消耗的预稳态爆发一致,表明化学反应后的一个步骤,可能是产物释放,有助于限制kcat。适度的溶剂粘度对kcat的影响表明这一步骤只是部分扩散。综上所述,这些数据表明化学并没有限制反应速率,反而可能促进反应速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kinetic and Thermodynamic Characterization of Human 4-Oxo-l-proline Reductase Catalysis.

Kinetic and Thermodynamic Characterization of Human 4-Oxo-l-proline Reductase Catalysis.

Kinetic and Thermodynamic Characterization of Human 4-Oxo-l-proline Reductase Catalysis.

Kinetic and Thermodynamic Characterization of Human 4-Oxo-l-proline Reductase Catalysis.

The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic (R)-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction. Haldane relationships show the reaction equilibrium strongly favors the formation of cis-4-hydroxy-l-proline. Stereospecific deuteration of NADH C4 coupled with mass spectrometry analysis of the reaction established that the pro-S hydrogen is transferred. NADH is co-purified with the enzyme, and a binding kinetics competition assays with NAD+ defined dissociation rate constants for NADH of 0.13 s-1 at 5 °C and 7.2 s-1 at 25 °C. Isothermal titration calorimetry at 25 °C defined equilibrium dissociation constants of 0.48 and 29 μM for the BDH2:NADH and BDH2:NAD+ complexes, respectively. Differential scanning fluorimetry showed BDH2 is highly thermostabilized by NADH and NAD+. The kcat/KM pH-rate profile indicates that a group with a pKa of 7.3 and possibly another with a pKa of 8.7 must be deprotonated and protonated, respectively, for maximum binding of 4-oxo-l-proline and/or catalysis, while the kcat profile is largely insensitive to pH in the pH range used. The single-turnover rate constant is only 2-fold higher than kcat. This agrees with a pre-steady-state burst of substrate consumption, suggesting that a step after chemistry, possibly product release, contributes to limit kcat. A modest solvent viscosity effect on kcat indicates that this step is only partially diffusional. Taken together, these data suggest chemistry does not limit the reaction rate but may contribute to it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信