通过结构同源性鉴定结核分枝杆菌cAMP受体蛋白变构热点。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-02-18 Epub Date: 2025-01-31 DOI:10.1021/acs.biochem.4c00723
Stephen P Dokas, Daniel K Taylor, Lydia L Good, Sanuja Mohanaraj, Rodrigo A Maillard
{"title":"通过结构同源性鉴定结核分枝杆菌cAMP受体蛋白变构热点。","authors":"Stephen P Dokas, Daniel K Taylor, Lydia L Good, Sanuja Mohanaraj, Rodrigo A Maillard","doi":"10.1021/acs.biochem.4c00723","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the mechanisms of allosteric regulation in response to second messengers is crucial for advancing basic and applied research. This study focuses on the differential allosteric regulation by the ubiquitous signaling molecule, cAMP, in the cAMP receptor protein from <i>Escherichia coli</i> (CRP<sub>Ecoli</sub>) and from <i>Mycobacterium tuberculosis</i> (CRP<sub>MTB</sub>). By introducing structurally homologous mutations from allosteric hotspots previously identified in CRP<sub>Ecoli</sub> into CRP<sub>MTB</sub> and examining their effects on protein solution structure, stability and function, we aimed to determine the factors contributing to their differential allosteric regulation. Our results demonstrate that the mutations did not significantly alter the overall fold, assembly and thermodynamic stability of CRP<sub>MTB</sub>, but had varying effects on cAMP binding affinity and cooperativity. Interestingly, the mutations had minimal impact on the specific binding of CRP<sub>MTB</sub> to DNA promoter sites. However, we found that cAMP primarily reduces nonspecific CRP<sub>MTB</sub>-DNA complexes and that the mutants largely lose this ability. Furthermore, our experiments revealed that CRP<sub>MTB</sub>-DNA complexes serve as a nucleation point for additional binding of CRP<sub>MTB</sub> proteins to form high-order oligomers with the DNA. Overall, our findings highlight the importance of both cAMP and DNA interactions in modulating the allosteric regulation of CRP<sub>MTB</sub> and provide insights into the differential responses of CRP<sub>Ecoli</sub> and CRP<sub>MTB</sub> to cAMP.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"801-811"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying Allosteric Hotspots in <i>Mycobacterium tuberculosis</i> cAMP Receptor Protein through Structural Homology.\",\"authors\":\"Stephen P Dokas, Daniel K Taylor, Lydia L Good, Sanuja Mohanaraj, Rodrigo A Maillard\",\"doi\":\"10.1021/acs.biochem.4c00723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the mechanisms of allosteric regulation in response to second messengers is crucial for advancing basic and applied research. This study focuses on the differential allosteric regulation by the ubiquitous signaling molecule, cAMP, in the cAMP receptor protein from <i>Escherichia coli</i> (CRP<sub>Ecoli</sub>) and from <i>Mycobacterium tuberculosis</i> (CRP<sub>MTB</sub>). By introducing structurally homologous mutations from allosteric hotspots previously identified in CRP<sub>Ecoli</sub> into CRP<sub>MTB</sub> and examining their effects on protein solution structure, stability and function, we aimed to determine the factors contributing to their differential allosteric regulation. Our results demonstrate that the mutations did not significantly alter the overall fold, assembly and thermodynamic stability of CRP<sub>MTB</sub>, but had varying effects on cAMP binding affinity and cooperativity. Interestingly, the mutations had minimal impact on the specific binding of CRP<sub>MTB</sub> to DNA promoter sites. However, we found that cAMP primarily reduces nonspecific CRP<sub>MTB</sub>-DNA complexes and that the mutants largely lose this ability. Furthermore, our experiments revealed that CRP<sub>MTB</sub>-DNA complexes serve as a nucleation point for additional binding of CRP<sub>MTB</sub> proteins to form high-order oligomers with the DNA. Overall, our findings highlight the importance of both cAMP and DNA interactions in modulating the allosteric regulation of CRP<sub>MTB</sub> and provide insights into the differential responses of CRP<sub>Ecoli</sub> and CRP<sub>MTB</sub> to cAMP.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"801-811\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00723\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00723","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解响应第二信使的变构调节机制对于推进基础和应用研究至关重要。本研究重点研究了普遍存在的信号分子cAMP在大肠杆菌(CRPEcoli)和结核分枝杆菌(CRPMTB) cAMP受体蛋白中的差异变构调节。通过将先前在CRPEcoli中发现的变构热点的结构同源突变引入CRPMTB,并研究它们对蛋白溶液结构、稳定性和功能的影响,我们旨在确定导致它们差异变构调控的因素。我们的研究结果表明,突变对CRPMTB的整体折叠、组装和热力学稳定性没有显著影响,但对cAMP的结合亲和力和协同性有不同的影响。有趣的是,这些突变对CRPMTB与DNA启动子位点特异性结合的影响很小。然而,我们发现cAMP主要降低非特异性CRPMTB-DNA复合物,并且突变体在很大程度上失去了这种能力。此外,我们的实验表明,CRPMTB-DNA复合物作为CRPMTB蛋白的附加结合的成核点,与DNA形成高阶低聚物。总的来说,我们的研究结果强调了cAMP和DNA相互作用在调节CRPMTB变构调节中的重要性,并提供了CRPEcoli和CRPMTB对cAMP的差异反应的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Allosteric Hotspots in Mycobacterium tuberculosis cAMP Receptor Protein through Structural Homology.

Understanding the mechanisms of allosteric regulation in response to second messengers is crucial for advancing basic and applied research. This study focuses on the differential allosteric regulation by the ubiquitous signaling molecule, cAMP, in the cAMP receptor protein from Escherichia coli (CRPEcoli) and from Mycobacterium tuberculosis (CRPMTB). By introducing structurally homologous mutations from allosteric hotspots previously identified in CRPEcoli into CRPMTB and examining their effects on protein solution structure, stability and function, we aimed to determine the factors contributing to their differential allosteric regulation. Our results demonstrate that the mutations did not significantly alter the overall fold, assembly and thermodynamic stability of CRPMTB, but had varying effects on cAMP binding affinity and cooperativity. Interestingly, the mutations had minimal impact on the specific binding of CRPMTB to DNA promoter sites. However, we found that cAMP primarily reduces nonspecific CRPMTB-DNA complexes and that the mutants largely lose this ability. Furthermore, our experiments revealed that CRPMTB-DNA complexes serve as a nucleation point for additional binding of CRPMTB proteins to form high-order oligomers with the DNA. Overall, our findings highlight the importance of both cAMP and DNA interactions in modulating the allosteric regulation of CRPMTB and provide insights into the differential responses of CRPEcoli and CRPMTB to cAMP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信