脉冲辐射解法研究氧化还原活性化合物氧化SoxR中[2Fe-2S]簇的动力学。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-02-18 Epub Date: 2025-01-30 DOI:10.1021/acs.biochem.4c00679
Kazuo Kobayashi, Takahiro Tanaka, Takahiro Kozawa
{"title":"脉冲辐射解法研究氧化还原活性化合物氧化SoxR中[2Fe-2S]簇的动力学。","authors":"Kazuo Kobayashi, Takahiro Tanaka, Takahiro Kozawa","doi":"10.1021/acs.biochem.4c00679","DOIUrl":null,"url":null,"abstract":"<p><p>SoxR containing a [2Fe-2S] cluster required for its transcription activity functions as a bacterial stress-response sensor that is activated through oxidation by redox-active compounds (RACs). SoxR from <i>Escherichia coli</i> (EcSoxR) is activated by nearly all RACs nonspecifically. In contrast, nonenteric SoxRs such as <i>Pseudomonas aeruginosa</i> (PaSoxR), and <i>Streptomyces coelicolor</i> (ScSoxR) activate their target genes in response to RAC including endogenously produced metabolites. To investigate the determinants of SoxR's activity, the endogenous or various synthetic RACs-mediated oxidation of the [2Fe-2S] cluster of EcSoxR, PaSoxR, and ScSoxR were measured by pulse radiolysis. Radiolytically generated hydrated electrons (e<sub>aq</sub><sup>-</sup>) very rapidly reduced the oxidized form of the [2Fe-2S] cluster of SoxR. In the presence of RAC, a subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Both EcSoxR and PaSoxR reacted very rapidly (2.0 × 10<sup>8</sup> to 2.0 × 10<sup>9</sup> M<sup>-1</sup> s<sup>-1</sup>) with various RACs, including viologen, phenazines, and quinones. No differences in kinetic behaviors were evident between EcSoxR and PaSoxR, whereas ScSoxR reacted with a limited range of RACs.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"895-902"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of the Oxidation of the [2Fe-2S] Cluster in SoxR by Redox-Active Compounds as Studied by Pulse Radiolysis.\",\"authors\":\"Kazuo Kobayashi, Takahiro Tanaka, Takahiro Kozawa\",\"doi\":\"10.1021/acs.biochem.4c00679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SoxR containing a [2Fe-2S] cluster required for its transcription activity functions as a bacterial stress-response sensor that is activated through oxidation by redox-active compounds (RACs). SoxR from <i>Escherichia coli</i> (EcSoxR) is activated by nearly all RACs nonspecifically. In contrast, nonenteric SoxRs such as <i>Pseudomonas aeruginosa</i> (PaSoxR), and <i>Streptomyces coelicolor</i> (ScSoxR) activate their target genes in response to RAC including endogenously produced metabolites. To investigate the determinants of SoxR's activity, the endogenous or various synthetic RACs-mediated oxidation of the [2Fe-2S] cluster of EcSoxR, PaSoxR, and ScSoxR were measured by pulse radiolysis. Radiolytically generated hydrated electrons (e<sub>aq</sub><sup>-</sup>) very rapidly reduced the oxidized form of the [2Fe-2S] cluster of SoxR. In the presence of RAC, a subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Both EcSoxR and PaSoxR reacted very rapidly (2.0 × 10<sup>8</sup> to 2.0 × 10<sup>9</sup> M<sup>-1</sup> s<sup>-1</sup>) with various RACs, including viologen, phenazines, and quinones. No differences in kinetic behaviors were evident between EcSoxR and PaSoxR, whereas ScSoxR reacted with a limited range of RACs.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"895-902\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00679\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00679","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SoxR含有转录活性所需的[2Fe-2S]簇,作为细菌应激反应传感器,通过氧化还原活性化合物(RACs)的氧化激活。来自大肠杆菌的SoxR (EcSoxR)被几乎所有的rac非特异性激活。相比之下,非肠源性SoxRs,如铜绿假单胞菌(PaSoxR)和铜色链霉菌(ScSoxR)激活其靶基因以响应RAC,包括内源性产生的代谢物。为了研究SoxR活性的决定因素,通过脉冲辐射溶解法测量了内源性或各种合成的racs介导的EcSoxR、PaSoxR和ScSoxR的[2Fe-2S]簇氧化。辐射分解产生的水合电子(eaq-)非常迅速地还原了SoxR的[2Fe-2S]簇的氧化形式。在RAC存在的情况下,在毫秒的时间尺度上观察到[2Fe-2S]团簇的再氧化对应的可见区吸收的增加。EcSoxR和PaSoxR与各种rac(包括紫酮、非那嗪和醌类)反应非常快(2.0 × 108至2.0 × 109 M-1 s-1)。EcSoxR和PaSoxR之间的动力学行为没有明显差异,而ScSoxR与有限范围的rac反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetics of the Oxidation of the [2Fe-2S] Cluster in SoxR by Redox-Active Compounds as Studied by Pulse Radiolysis.

SoxR containing a [2Fe-2S] cluster required for its transcription activity functions as a bacterial stress-response sensor that is activated through oxidation by redox-active compounds (RACs). SoxR from Escherichia coli (EcSoxR) is activated by nearly all RACs nonspecifically. In contrast, nonenteric SoxRs such as Pseudomonas aeruginosa (PaSoxR), and Streptomyces coelicolor (ScSoxR) activate their target genes in response to RAC including endogenously produced metabolites. To investigate the determinants of SoxR's activity, the endogenous or various synthetic RACs-mediated oxidation of the [2Fe-2S] cluster of EcSoxR, PaSoxR, and ScSoxR were measured by pulse radiolysis. Radiolytically generated hydrated electrons (eaq-) very rapidly reduced the oxidized form of the [2Fe-2S] cluster of SoxR. In the presence of RAC, a subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Both EcSoxR and PaSoxR reacted very rapidly (2.0 × 108 to 2.0 × 109 M-1 s-1) with various RACs, including viologen, phenazines, and quinones. No differences in kinetic behaviors were evident between EcSoxR and PaSoxR, whereas ScSoxR reacted with a limited range of RACs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信