混沌时间序列预测:基于lstm和基于变压器的神经网络的性能比较

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
João Valle, Odemir Martinez Bruno
{"title":"混沌时间序列预测:基于lstm和基于变压器的神经网络的性能比较","authors":"João Valle,&nbsp;Odemir Martinez Bruno","doi":"10.1016/j.chaos.2025.116034","DOIUrl":null,"url":null,"abstract":"<div><div>The complexity and sensitivity to initial conditions are the main characteristics of chaotic dynamical systems, making long-term forecasting a significant challenge. Deep learning, however, is a powerful technique that can potentially improve forecasting in chaotic time series. In this study, we explored the performance of modern neural network architectures in forecasting chaotic time series with different Lyapunov exponents. To accomplish this, we created a robust dataset composed of chaotic orbits with Lyapunov exponents ranging from 0.019 to 1.253 and used state-of-the-art neural network models for time series forecasting, including recurrent-based and transformer-based architectures. Our results show that LSTNet presents the best results in one-step-ahead and the recursive one-step-ahead forecasting for the majority of the time series in our dataset, enabling the prediction of chaotic time series with high Lyapunov exponent. Additionally, we observed that the sensitivity to initial conditions and complexity still affects the performance of the neural networks, decaying predictive power in time series with larger Lyapunov exponent.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 116034"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting chaotic time series: Comparative performance of LSTM-based and Transformer-based neural network\",\"authors\":\"João Valle,&nbsp;Odemir Martinez Bruno\",\"doi\":\"10.1016/j.chaos.2025.116034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The complexity and sensitivity to initial conditions are the main characteristics of chaotic dynamical systems, making long-term forecasting a significant challenge. Deep learning, however, is a powerful technique that can potentially improve forecasting in chaotic time series. In this study, we explored the performance of modern neural network architectures in forecasting chaotic time series with different Lyapunov exponents. To accomplish this, we created a robust dataset composed of chaotic orbits with Lyapunov exponents ranging from 0.019 to 1.253 and used state-of-the-art neural network models for time series forecasting, including recurrent-based and transformer-based architectures. Our results show that LSTNet presents the best results in one-step-ahead and the recursive one-step-ahead forecasting for the majority of the time series in our dataset, enabling the prediction of chaotic time series with high Lyapunov exponent. Additionally, we observed that the sensitivity to initial conditions and complexity still affects the performance of the neural networks, decaying predictive power in time series with larger Lyapunov exponent.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"192 \",\"pages\":\"Article 116034\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925000475\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925000475","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

混沌动力系统的复杂性和对初始条件的敏感性是混沌动力系统的主要特征,这使得长期预测成为一项重大挑战。然而,深度学习是一种强大的技术,可以潜在地改善混沌时间序列的预测。在这项研究中,我们探讨了现代神经网络架构在预测具有不同李雅普诺夫指数的混沌时间序列中的性能。为了实现这一目标,我们创建了一个由李雅普诺夫指数范围为0.019至1.253的混沌轨道组成的鲁棒数据集,并使用最先进的神经网络模型进行时间序列预测,包括基于循环和基于变压器的架构。结果表明,LSTNet对我们数据集中的大部分时间序列在一步超前和递归一步超前预测方面表现出最好的效果,能够预测具有高Lyapunov指数的混沌时间序列。此外,我们观察到对初始条件的敏感性和复杂性仍然会影响神经网络的性能,在Lyapunov指数较大的时间序列中,预测能力会衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting chaotic time series: Comparative performance of LSTM-based and Transformer-based neural network
The complexity and sensitivity to initial conditions are the main characteristics of chaotic dynamical systems, making long-term forecasting a significant challenge. Deep learning, however, is a powerful technique that can potentially improve forecasting in chaotic time series. In this study, we explored the performance of modern neural network architectures in forecasting chaotic time series with different Lyapunov exponents. To accomplish this, we created a robust dataset composed of chaotic orbits with Lyapunov exponents ranging from 0.019 to 1.253 and used state-of-the-art neural network models for time series forecasting, including recurrent-based and transformer-based architectures. Our results show that LSTNet presents the best results in one-step-ahead and the recursive one-step-ahead forecasting for the majority of the time series in our dataset, enabling the prediction of chaotic time series with high Lyapunov exponent. Additionally, we observed that the sensitivity to initial conditions and complexity still affects the performance of the neural networks, decaying predictive power in time series with larger Lyapunov exponent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信