轻度阿尔茨海默病代谢组学发现与脑代谢低下之间的关系

Moein Mir, Parinaz Khosravani, Elham Ramezannezhad, Fatemeh Pourali Saadabad, Marjan Falahati, Mahsa Ghanbarian, Parsa Saberian, Mohammad Sadeghi, Nafise Niknam, Sanaz Eskandari Ghejelou, Masoumeh Jafari, David Gulisashvili, Mahsa Mayeli
{"title":"轻度阿尔茨海默病代谢组学发现与脑代谢低下之间的关系","authors":"Moein Mir, Parinaz Khosravani, Elham Ramezannezhad, Fatemeh Pourali Saadabad, Marjan Falahati, Mahsa Ghanbarian, Parsa Saberian, Mohammad Sadeghi, Nafise Niknam, Sanaz Eskandari Ghejelou, Masoumeh Jafari, David Gulisashvili, Mahsa Mayeli","doi":"10.2174/0115672050350196250110092338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a progressive neurodegenerative disease with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism. Metabolomics can detect disturbances in biofluids, which may be advantageous for early detection of some AD-related changes. The study aims to predict brain hypometabolism in Alzheimer's disease using metabolomics findings and develop a predictive model based on metabolomic data.</p><p><strong>Methods: </strong>The data used in this study were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We conducted a longitudinal study with three assessment time points to investigate the predictive power of baseline metabolomics for modeling longitudinal fluorodeoxyglucose- positron emission tomography (FDG-PET) trajectory changes in AD patients. A total of 44 participants with AD were included. The Alzheimer's Disease Assessment Scale (ADAS), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were used for cognitive assessments. A single global brain hypo-metabolism index was used as the outcome variable.</p><p><strong>Results: </strong>Across models, we observed consistent positive relationships between specific cholesterol esters - CE (20:3) (p = 0.005) and CE (18:3) (p = 0.0039) - and FDG-PET metrics, indicating these baseline metabolites may be valuable indicators of future PET score changes. Selected triglycerides like DG-O (16:0-20:4) also showed time-specific positive associations (p = 0.017).</p><p><strong>Conclusion: </strong>This research provides new insights into the disruptions in the metabolic network linked to AD pathology. These findings could pave the way for identifying novel biomarkers and potential treatment targets for AD.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"679-689"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations Between Metabolomics Findings and Brain Hypometabolism in Mild Cognitive Impairment and Alzheimer's Disease.\",\"authors\":\"Moein Mir, Parinaz Khosravani, Elham Ramezannezhad, Fatemeh Pourali Saadabad, Marjan Falahati, Mahsa Ghanbarian, Parsa Saberian, Mohammad Sadeghi, Nafise Niknam, Sanaz Eskandari Ghejelou, Masoumeh Jafari, David Gulisashvili, Mahsa Mayeli\",\"doi\":\"10.2174/0115672050350196250110092338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alzheimer's disease (AD) is a progressive neurodegenerative disease with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism. Metabolomics can detect disturbances in biofluids, which may be advantageous for early detection of some AD-related changes. The study aims to predict brain hypometabolism in Alzheimer's disease using metabolomics findings and develop a predictive model based on metabolomic data.</p><p><strong>Methods: </strong>The data used in this study were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We conducted a longitudinal study with three assessment time points to investigate the predictive power of baseline metabolomics for modeling longitudinal fluorodeoxyglucose- positron emission tomography (FDG-PET) trajectory changes in AD patients. A total of 44 participants with AD were included. The Alzheimer's Disease Assessment Scale (ADAS), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were used for cognitive assessments. A single global brain hypo-metabolism index was used as the outcome variable.</p><p><strong>Results: </strong>Across models, we observed consistent positive relationships between specific cholesterol esters - CE (20:3) (p = 0.005) and CE (18:3) (p = 0.0039) - and FDG-PET metrics, indicating these baseline metabolites may be valuable indicators of future PET score changes. Selected triglycerides like DG-O (16:0-20:4) also showed time-specific positive associations (p = 0.017).</p><p><strong>Conclusion: </strong>This research provides new insights into the disruptions in the metabolic network linked to AD pathology. These findings could pave the way for identifying novel biomarkers and potential treatment targets for AD.</p>\",\"PeriodicalId\":94309,\"journal\":{\"name\":\"Current Alzheimer research\",\"volume\":\" \",\"pages\":\"679-689\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Alzheimer research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672050350196250110092338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672050350196250110092338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:阿尔茨海默病(AD)是一种进行性神经退行性疾病,由于全球人口老龄化,患病率不断上升。现有的阿尔茨海默病诊断方法很难在最早和最可治疗的阶段发现这种疾病。阿尔茨海默病的一个早期指标是大脑葡萄糖代谢的显著下降。代谢组学可以检测生物体液中的代谢紊乱,这可能有利于早期发现一些与ad相关的变化。该研究旨在利用代谢组学研究结果预测阿尔茨海默病的大脑低代谢,并建立基于代谢组学数据的预测模型。方法:本研究中使用的数据来自阿尔茨海默病神经影像学倡议(ADNI)项目。我们进行了一项纵向队列研究,采用三个评估时间点来研究基线代谢组学数据对模拟AD患者纵向氟脱氧葡萄糖-正电子发射断层扫描(FDG-PET)轨迹变化的预测能力。共纳入44名AD患者。参与者的认知能力采用阿尔茨海默病评估量表(ADAS)和迷你精神状态检查(MMSE)进行评估,而痴呆症的总体严重程度采用临床痴呆评分-盒和(CDR-SB)来衡量。我们使用ADNI的FDG MetaROIs (Meta Regions of Interest)数据集来识别大脑中ad相关的低代谢。这些metaris是根据在AD和MCI受试者的FDG-PET研究中经常提到的区域选择的。结果:在所有模型中,我们观察到特定胆固醇酯- CE (20:3) (p = 0.005)和CE (18:3) (p = 0.0039) -与FDG-PET指标之间存在一致的正相关关系,表明这些基线代谢物可能是未来PET评分变化的有价值指标。所选甘油三酯如DG-O(16:0-20:4)也显示出特定时间的正相关(p = 0.017)。结论:本研究为与AD病理相关的代谢网络中断提供了新的见解。这些发现可能为识别新的生物标志物和潜在的AD治疗靶点铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Associations Between Metabolomics Findings and Brain Hypometabolism in Mild Cognitive Impairment and Alzheimer's Disease.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism. Metabolomics can detect disturbances in biofluids, which may be advantageous for early detection of some AD-related changes. The study aims to predict brain hypometabolism in Alzheimer's disease using metabolomics findings and develop a predictive model based on metabolomic data.

Methods: The data used in this study were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We conducted a longitudinal study with three assessment time points to investigate the predictive power of baseline metabolomics for modeling longitudinal fluorodeoxyglucose- positron emission tomography (FDG-PET) trajectory changes in AD patients. A total of 44 participants with AD were included. The Alzheimer's Disease Assessment Scale (ADAS), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were used for cognitive assessments. A single global brain hypo-metabolism index was used as the outcome variable.

Results: Across models, we observed consistent positive relationships between specific cholesterol esters - CE (20:3) (p = 0.005) and CE (18:3) (p = 0.0039) - and FDG-PET metrics, indicating these baseline metabolites may be valuable indicators of future PET score changes. Selected triglycerides like DG-O (16:0-20:4) also showed time-specific positive associations (p = 0.017).

Conclusion: This research provides new insights into the disruptions in the metabolic network linked to AD pathology. These findings could pave the way for identifying novel biomarkers and potential treatment targets for AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信