水位的极端波动如何影响亚马逊河漫滩湖泊的鱼类状况?

IF 1.7 3区 农林科学 Q2 FISHERIES
Priit Zingel, Arvo Tuvikene, Tiina Zingel, Adalberto Luis Val, Helen Agasild
{"title":"水位的极端波动如何影响亚马逊河漫滩湖泊的鱼类状况?","authors":"Priit Zingel, Arvo Tuvikene, Tiina Zingel, Adalberto Luis Val, Helen Agasild","doi":"10.1111/jfb.16063","DOIUrl":null,"url":null,"abstract":"<p><p>The annual flood pulse is a defining feature of Amazonian floodplain lakes, creating a highly variable environment that influences resource availability, such as food and habitat. These cyclical changes necessitate a high degree of adaptability among fish species, many of which have evolved specialized strategies to cope with the fluctuating conditions. In 2023, the Amazon basin experienced a record-breaking drought event, leading to mass mortality of Amazonian fish and other wildlife. This study examines the effect of this extreme event on fish condition in white-water (Rio Solimões basin) and black-water (Rio Negro basin) floodplain lakes. These contrasting environments provide a unique opportunity to study how different water qualities and extreme water-level fluctuations impact fish condition. Research was conducted during the normal low-water period in November 2019 and the drastically decreased water levels in November 2023. The main objective was to understand how extreme water-level fluctuations affect fish health and nutritional status. A total of 585 fishes were analyzed, with 294 from white-water and 291 from black-water, representing different feeding types to provide a comprehensive picture of changes in fish condition. Water-level changes had a statistically significant impact on fish condition in both areas. Comparing low-water and extreme low-water levels, fish condition was consistently higher during the normal low-water period. The linear mixed-effects model revealed that the intensity of the low-water season had a significant effect on fish length-adjusted mass, suggesting that the decrease in water level is associated with an overall decrease in fish length-adjusted mass. When comparing the mean water-level effect (Glass's Δ) between low-water and extreme low-water levels, we found a bigger effect in the black-water system than in the white-water system. This difference may be attributed to the lower nutrient content and higher levels of humic acids and refractory dissolved organic matter in black-water, which can further limit primary productivity and food availability for fishes.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do extreme fluctuations in water level affect fish condition in Amazonian Floodplain Lakes?\",\"authors\":\"Priit Zingel, Arvo Tuvikene, Tiina Zingel, Adalberto Luis Val, Helen Agasild\",\"doi\":\"10.1111/jfb.16063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The annual flood pulse is a defining feature of Amazonian floodplain lakes, creating a highly variable environment that influences resource availability, such as food and habitat. These cyclical changes necessitate a high degree of adaptability among fish species, many of which have evolved specialized strategies to cope with the fluctuating conditions. In 2023, the Amazon basin experienced a record-breaking drought event, leading to mass mortality of Amazonian fish and other wildlife. This study examines the effect of this extreme event on fish condition in white-water (Rio Solimões basin) and black-water (Rio Negro basin) floodplain lakes. These contrasting environments provide a unique opportunity to study how different water qualities and extreme water-level fluctuations impact fish condition. Research was conducted during the normal low-water period in November 2019 and the drastically decreased water levels in November 2023. The main objective was to understand how extreme water-level fluctuations affect fish health and nutritional status. A total of 585 fishes were analyzed, with 294 from white-water and 291 from black-water, representing different feeding types to provide a comprehensive picture of changes in fish condition. Water-level changes had a statistically significant impact on fish condition in both areas. Comparing low-water and extreme low-water levels, fish condition was consistently higher during the normal low-water period. The linear mixed-effects model revealed that the intensity of the low-water season had a significant effect on fish length-adjusted mass, suggesting that the decrease in water level is associated with an overall decrease in fish length-adjusted mass. When comparing the mean water-level effect (Glass's Δ) between low-water and extreme low-water levels, we found a bigger effect in the black-water system than in the white-water system. This difference may be attributed to the lower nutrient content and higher levels of humic acids and refractory dissolved organic matter in black-water, which can further limit primary productivity and food availability for fishes.</p>\",\"PeriodicalId\":15794,\"journal\":{\"name\":\"Journal of fish biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of fish biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/jfb.16063\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.16063","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

每年的洪水脉冲是亚马逊洪泛区湖泊的一个决定性特征,它创造了一个高度可变的环境,影响着食物和栖息地等资源的可用性。这些周期性变化要求鱼类具有高度的适应性,其中许多鱼类已经进化出专门的策略来应对波动的环境。2023年,亚马逊盆地经历了一场破纪录的干旱事件,导致亚马逊鱼类和其他野生动物大量死亡。本研究考察了这一极端事件对白水(里约热内卢Solimões盆地)和黑水(里约热内卢Negro盆地)漫滩湖泊鱼类状况的影响。这些对比鲜明的环境为研究不同的水质和极端的水位波动如何影响鱼类状况提供了一个独特的机会。研究是在2019年11月正常低潮期和2023年11月水位急剧下降期间进行的。主要目的是了解极端的水位波动如何影响鱼类的健康和营养状况。共分析鱼类585条,其中白水鱼类294条,黑水鱼类291条,代表了不同的摄食类型,全面反映了鱼类状况的变化。水位变化对这两个地区的鱼类状况都有统计上显著的影响。比较低水位和极低水位,正常低水位期间鱼类状况始终较高。线性混合效应模型显示,淡水期强度对鱼类长度调整质量有显著影响,表明水位的下降与鱼类长度调整质量的整体下降有关。当比较低水位和极低水位之间的平均水位效应(Glass's Δ)时,我们发现黑水系统比白水系统的影响更大。这种差异可能是由于黑水中营养物质含量较低,腐植酸和难溶性有机物含量较高,这进一步限制了鱼类的初级生产力和食物可得性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How do extreme fluctuations in water level affect fish condition in Amazonian Floodplain Lakes?

The annual flood pulse is a defining feature of Amazonian floodplain lakes, creating a highly variable environment that influences resource availability, such as food and habitat. These cyclical changes necessitate a high degree of adaptability among fish species, many of which have evolved specialized strategies to cope with the fluctuating conditions. In 2023, the Amazon basin experienced a record-breaking drought event, leading to mass mortality of Amazonian fish and other wildlife. This study examines the effect of this extreme event on fish condition in white-water (Rio Solimões basin) and black-water (Rio Negro basin) floodplain lakes. These contrasting environments provide a unique opportunity to study how different water qualities and extreme water-level fluctuations impact fish condition. Research was conducted during the normal low-water period in November 2019 and the drastically decreased water levels in November 2023. The main objective was to understand how extreme water-level fluctuations affect fish health and nutritional status. A total of 585 fishes were analyzed, with 294 from white-water and 291 from black-water, representing different feeding types to provide a comprehensive picture of changes in fish condition. Water-level changes had a statistically significant impact on fish condition in both areas. Comparing low-water and extreme low-water levels, fish condition was consistently higher during the normal low-water period. The linear mixed-effects model revealed that the intensity of the low-water season had a significant effect on fish length-adjusted mass, suggesting that the decrease in water level is associated with an overall decrease in fish length-adjusted mass. When comparing the mean water-level effect (Glass's Δ) between low-water and extreme low-water levels, we found a bigger effect in the black-water system than in the white-water system. This difference may be attributed to the lower nutrient content and higher levels of humic acids and refractory dissolved organic matter in black-water, which can further limit primary productivity and food availability for fishes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of fish biology
Journal of fish biology 生物-海洋与淡水生物学
CiteScore
4.00
自引率
10.00%
发文量
292
审稿时长
3 months
期刊介绍: The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信