全细胞生物催化微生物合成间酪氨酸。

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vanna Nguyen, Ashley Tseng, Cui Guo, Mary Adwer, Yuheng Lin
{"title":"全细胞生物催化微生物合成间酪氨酸。","authors":"Vanna Nguyen,&nbsp;Ashley Tseng,&nbsp;Cui Guo,&nbsp;Mary Adwer,&nbsp;Yuheng Lin","doi":"10.1016/j.enzmictec.2025.110590","DOIUrl":null,"url":null,"abstract":"<div><div><em>Meta</em>-tyrosine (<em>m</em>-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of <em>m</em>-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of <em>m</em>-tyrosine by establishing the <em>in vivo</em> enzyme activity of phenylalanine 3-hydroxylase (PacX from <em>Streptomyces coeruleoribudus</em>) in <em>E. coli</em>, which catalyzes the <em>meta</em>-hydroxylation of phenylalanine to produce <em>m</em>-tyrosine. Remarkably, PacX is capable of utilizing the native <em>E. coli</em> cofactor tetrahydromonapterin (MH4) for its hydroxylation activity. The integration of a non-native MH4 regeneration system significantly improved the bioconversion efficiency, resulting in the accumulation of <em>m</em>-tyrosine at a concentration of up to 368 mg/L. Additionally, we attempted to modify a well-characterized phenylalanine 4-hydroxylase (P4H) from <em>Xanthomonas campestris</em> to alter its regioselectivity through protein engineering. Remarkably, a double mutant (F184C/G199T) successfully shifted the enzyme’s hydroxylation specificity from the <em>para-</em> to the <em>meta-</em>position, demonstrating the feasibility of altering the regioselectivity of aromatic amino acid hydroxylases (AAAHs). To the best of our knowledge, this is the first report of microbial production of <em>m</em>-tyrosine through whole-cell biocatalysis.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"185 ","pages":"Article 110590"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial synthesis of m-tyrosine via whole-cell biocatalysis\",\"authors\":\"Vanna Nguyen,&nbsp;Ashley Tseng,&nbsp;Cui Guo,&nbsp;Mary Adwer,&nbsp;Yuheng Lin\",\"doi\":\"10.1016/j.enzmictec.2025.110590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Meta</em>-tyrosine (<em>m</em>-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of <em>m</em>-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of <em>m</em>-tyrosine by establishing the <em>in vivo</em> enzyme activity of phenylalanine 3-hydroxylase (PacX from <em>Streptomyces coeruleoribudus</em>) in <em>E. coli</em>, which catalyzes the <em>meta</em>-hydroxylation of phenylalanine to produce <em>m</em>-tyrosine. Remarkably, PacX is capable of utilizing the native <em>E. coli</em> cofactor tetrahydromonapterin (MH4) for its hydroxylation activity. The integration of a non-native MH4 regeneration system significantly improved the bioconversion efficiency, resulting in the accumulation of <em>m</em>-tyrosine at a concentration of up to 368 mg/L. Additionally, we attempted to modify a well-characterized phenylalanine 4-hydroxylase (P4H) from <em>Xanthomonas campestris</em> to alter its regioselectivity through protein engineering. Remarkably, a double mutant (F184C/G199T) successfully shifted the enzyme’s hydroxylation specificity from the <em>para-</em> to the <em>meta-</em>position, demonstrating the feasibility of altering the regioselectivity of aromatic amino acid hydroxylases (AAAHs). To the best of our knowledge, this is the first report of microbial production of <em>m</em>-tyrosine through whole-cell biocatalysis.</div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"185 \",\"pages\":\"Article 110590\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925000109\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

间酪氨酸(间酪氨酸)是一种非蛋白质原性氨基酸,在农业除草剂和各种医疗用途方面显示出巨大的应用潜力。然而,间酪氨酸的天然丰度非常低,限制了它的广泛使用。在本研究中,我们通过在大肠杆菌中建立苯丙氨酸3-羟化酶(PacX)的体内酶活性,成功地实现了微生物生产间酪氨酸,该酶催化苯丙氨酸的间羟基化生成间酪氨酸。值得注意的是,PacX能够利用天然的大肠杆菌辅助因子四氢单蝶呤(MH4)进行羟基化活性。非天然MH4再生系统的整合显著提高了生物转化效率,导致m-酪氨酸的积累浓度高达368 mg/L。此外,我们试图通过蛋白质工程修饰来自黄单胞菌的表征良好的苯丙氨酸4-羟化酶(P4H),以改变其区域选择性。值得注意的是,双突变体(F184C/G199T)成功地将酶的羟基化特异性从对位转移到中间位置,证明了改变芳香氨基酸羟化酶(AAAHs)区域选择性的可行性。据我们所知,这是第一个通过全细胞生物催化微生物生产间酪氨酸的报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial synthesis of m-tyrosine via whole-cell biocatalysis
Meta-tyrosine (m-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of m-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of m-tyrosine by establishing the in vivo enzyme activity of phenylalanine 3-hydroxylase (PacX from Streptomyces coeruleoribudus) in E. coli, which catalyzes the meta-hydroxylation of phenylalanine to produce m-tyrosine. Remarkably, PacX is capable of utilizing the native E. coli cofactor tetrahydromonapterin (MH4) for its hydroxylation activity. The integration of a non-native MH4 regeneration system significantly improved the bioconversion efficiency, resulting in the accumulation of m-tyrosine at a concentration of up to 368 mg/L. Additionally, we attempted to modify a well-characterized phenylalanine 4-hydroxylase (P4H) from Xanthomonas campestris to alter its regioselectivity through protein engineering. Remarkably, a double mutant (F184C/G199T) successfully shifted the enzyme’s hydroxylation specificity from the para- to the meta-position, demonstrating the feasibility of altering the regioselectivity of aromatic amino acid hydroxylases (AAAHs). To the best of our knowledge, this is the first report of microbial production of m-tyrosine through whole-cell biocatalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信