功能主成分分析与信息观察时间。

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2024-10-17 eCollection Date: 2025-01-01 DOI:10.1093/biomet/asae055
Peijun Sang, Dehan Kong, Shu Yang
{"title":"功能主成分分析与信息观察时间。","authors":"Peijun Sang, Dehan Kong, Shu Yang","doi":"10.1093/biomet/asae055","DOIUrl":null,"url":null,"abstract":"<p><p>Functional principal component analysis has been shown to be invaluable for revealing variation modes of longitudinal outcomes, which serve as important building blocks for forecasting and model building. Decades of research have advanced methods for functional principal component analysis, often assuming independence between the observation times and longitudinal outcomes. Yet such assumptions are fragile in real-world settings where observation times may be driven by outcome-related processes. Rather than ignoring the informative observation time process, we explicitly model the observational times by a general counting process dependent on time-varying prognostic factors. Identification of the mean, covariance function and functional principal components ensues via inverse intensity weighting. We propose using weighted penalized splines for estimation and establish consistency and convergence rates for the weighted estimators. Simulation studies demonstrate that the proposed estimators are substantially more accurate than the existing ones in the presence of a correlation between the observation time process and the longitudinal outcome process. We further examine the finite-sample performance of the proposed method using the Acute Infection and Early Disease Research Program study.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"112 1","pages":"asae055"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771518/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional principal component analysis with informative observation times.\",\"authors\":\"Peijun Sang, Dehan Kong, Shu Yang\",\"doi\":\"10.1093/biomet/asae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional principal component analysis has been shown to be invaluable for revealing variation modes of longitudinal outcomes, which serve as important building blocks for forecasting and model building. Decades of research have advanced methods for functional principal component analysis, often assuming independence between the observation times and longitudinal outcomes. Yet such assumptions are fragile in real-world settings where observation times may be driven by outcome-related processes. Rather than ignoring the informative observation time process, we explicitly model the observational times by a general counting process dependent on time-varying prognostic factors. Identification of the mean, covariance function and functional principal components ensues via inverse intensity weighting. We propose using weighted penalized splines for estimation and establish consistency and convergence rates for the weighted estimators. Simulation studies demonstrate that the proposed estimators are substantially more accurate than the existing ones in the presence of a correlation between the observation time process and the longitudinal outcome process. We further examine the finite-sample performance of the proposed method using the Acute Infection and Early Disease Research Program study.</p>\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"112 1\",\"pages\":\"asae055\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771518/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asae055\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae055","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

功能主成分分析对于揭示纵向结果的变化模式具有不可估量的价值,这是预测和模型构建的重要组成部分。几十年的研究已经有了先进的功能主成分分析方法,通常假设观察时间和纵向结果之间是独立的。然而,在现实环境中,这种假设是脆弱的,因为观察时间可能受到与结果相关的过程的驱动。我们不是忽略观测时间过程的信息,而是通过依赖于时变预测因素的一般计数过程来明确地模拟观测时间。通过逆强度加权确定均值、协方差函数和功能主成分。我们提出使用加权惩罚样条进行估计,并建立了加权估计的一致性和收敛率。仿真研究表明,在观测时间过程和纵向结果过程之间存在相关性的情况下,所提出的估计器比现有的估计器要准确得多。我们使用急性感染和早期疾病研究项目研究进一步检验了所提出方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional principal component analysis with informative observation times.

Functional principal component analysis has been shown to be invaluable for revealing variation modes of longitudinal outcomes, which serve as important building blocks for forecasting and model building. Decades of research have advanced methods for functional principal component analysis, often assuming independence between the observation times and longitudinal outcomes. Yet such assumptions are fragile in real-world settings where observation times may be driven by outcome-related processes. Rather than ignoring the informative observation time process, we explicitly model the observational times by a general counting process dependent on time-varying prognostic factors. Identification of the mean, covariance function and functional principal components ensues via inverse intensity weighting. We propose using weighted penalized splines for estimation and establish consistency and convergence rates for the weighted estimators. Simulation studies demonstrate that the proposed estimators are substantially more accurate than the existing ones in the presence of a correlation between the observation time process and the longitudinal outcome process. We further examine the finite-sample performance of the proposed method using the Acute Infection and Early Disease Research Program study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信