基于级联空间交叉注意网络的高光谱图像分类

IF 13.7
Bo Zhang;Yaxiong Chen;Shengwu Xiong;Xiaoqiang Lu
{"title":"基于级联空间交叉注意网络的高光谱图像分类","authors":"Bo Zhang;Yaxiong Chen;Shengwu Xiong;Xiaoqiang Lu","doi":"10.1109/TIP.2025.3533205","DOIUrl":null,"url":null,"abstract":"In hyperspectral images (HSIs), different land cover (LC) classes have distinct reflective characteristics at various wavelengths. Therefore, relying on only a few bands to distinguish all LC classes often leads to information loss, resulting in poor average accuracy. To address this problem, we propose a method called Cascaded Spatial Cross-Attention Network (CSCANet) for HSI classification. We design a cascaded spatial cross-attention module, which first performs cross-attention on local and global features in the spatial context, then uses a group cascade structure to sequentially propagate important spatial regions within the different channels, and finally obtains joint attention features to improve the robustness of the network. Moreover, we also design a two-branch feature separation structure based on spatial-spectral features to separate different LC Tokens as much as possible, thereby improving the distinguishability of different LC classes. Extensive experiments demonstrate that our method achieves excellent performance in enhancing classification accuracy and robustness. The source code can be obtained from <uri>https://github.com/WUTCM-Lab/CSCANet</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"899-913"},"PeriodicalIF":13.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Image Classification via Cascaded Spatial Cross-Attention Network\",\"authors\":\"Bo Zhang;Yaxiong Chen;Shengwu Xiong;Xiaoqiang Lu\",\"doi\":\"10.1109/TIP.2025.3533205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hyperspectral images (HSIs), different land cover (LC) classes have distinct reflective characteristics at various wavelengths. Therefore, relying on only a few bands to distinguish all LC classes often leads to information loss, resulting in poor average accuracy. To address this problem, we propose a method called Cascaded Spatial Cross-Attention Network (CSCANet) for HSI classification. We design a cascaded spatial cross-attention module, which first performs cross-attention on local and global features in the spatial context, then uses a group cascade structure to sequentially propagate important spatial regions within the different channels, and finally obtains joint attention features to improve the robustness of the network. Moreover, we also design a two-branch feature separation structure based on spatial-spectral features to separate different LC Tokens as much as possible, thereby improving the distinguishability of different LC classes. Extensive experiments demonstrate that our method achieves excellent performance in enhancing classification accuracy and robustness. The source code can be obtained from <uri>https://github.com/WUTCM-Lab/CSCANet</uri>.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"899-913\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10857952/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10857952/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高光谱图像(hsi)中,不同类型的土地覆盖(LC)在不同波长下具有不同的反射特性。因此,仅依靠少数波段来区分所有LC类别往往会导致信息丢失,导致平均准确率较差。为了解决这个问题,我们提出了一种称为级联空间交叉注意网络(CSCANet)的HSI分类方法。我们设计了一个级联空间交叉注意模块,首先对空间环境中的局部和全局特征进行交叉注意,然后使用组级联结构在不同通道中依次传播重要的空间区域,最后获得联合注意特征,提高网络的鲁棒性。此外,我们还设计了一种基于空间光谱特征的两分支特征分离结构,尽可能地分离不同的LC令牌,从而提高了不同LC类的可区分性。大量实验表明,该方法在提高分类精度和鲁棒性方面取得了很好的效果。源代码可以从https://github.com/WUTCM-Lab/CSCANet获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Image Classification via Cascaded Spatial Cross-Attention Network
In hyperspectral images (HSIs), different land cover (LC) classes have distinct reflective characteristics at various wavelengths. Therefore, relying on only a few bands to distinguish all LC classes often leads to information loss, resulting in poor average accuracy. To address this problem, we propose a method called Cascaded Spatial Cross-Attention Network (CSCANet) for HSI classification. We design a cascaded spatial cross-attention module, which first performs cross-attention on local and global features in the spatial context, then uses a group cascade structure to sequentially propagate important spatial regions within the different channels, and finally obtains joint attention features to improve the robustness of the network. Moreover, we also design a two-branch feature separation structure based on spatial-spectral features to separate different LC Tokens as much as possible, thereby improving the distinguishability of different LC classes. Extensive experiments demonstrate that our method achieves excellent performance in enhancing classification accuracy and robustness. The source code can be obtained from https://github.com/WUTCM-Lab/CSCANet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信