Masahiro O. Takahashi, Wen-Han Kao, Satoshi Fujimoto, Natalia B. Perkins
{"title":"基塔耶夫自旋液体中与高自旋杂质结合的Z2通量","authors":"Masahiro O. Takahashi, Wen-Han Kao, Satoshi Fujimoto, Natalia B. Perkins","doi":"10.1038/s41535-025-00729-8","DOIUrl":null,"url":null,"abstract":"<p>Stabilizing <i>Z</i><sub>2</sub> fluxes in Kitaev spin liquids (KSLs) is crucial for both characterizing candidate materials and identifying Ising anyons. In this study, we investigate the effects of spin-<i>S</i> magnetic impurities embedded in the spin-1/2 KSL. Utilizing exact diagonalization and density matrix renormalization group methods, we examine the impurity magnetization and ground-state flux sector with varying impurity coupling and spin size. Our findings reveal that impurity magnetization exhibits an integer/half-integer spin dependence, which aligns with analytical predictions, and a flux-sector transition from bound-flux to zero-flux occurs at low coupling strengths, independent of the impurity spin. Notably, for spin-3/2 impurities, we observe a reentrant bound-flux sector, which remains stable under magnetic fields. By considering fermionic representations of our spin Hamiltonian, we provide phenomenological explanations for the transitions. Our results suggest a novel way of binding a flux in KSLs, beyond the proposals of vacancies or Kondo impurities.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"40 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z2 flux binding to higher-spin impurities in the Kitaev spin liquid\",\"authors\":\"Masahiro O. Takahashi, Wen-Han Kao, Satoshi Fujimoto, Natalia B. Perkins\",\"doi\":\"10.1038/s41535-025-00729-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stabilizing <i>Z</i><sub>2</sub> fluxes in Kitaev spin liquids (KSLs) is crucial for both characterizing candidate materials and identifying Ising anyons. In this study, we investigate the effects of spin-<i>S</i> magnetic impurities embedded in the spin-1/2 KSL. Utilizing exact diagonalization and density matrix renormalization group methods, we examine the impurity magnetization and ground-state flux sector with varying impurity coupling and spin size. Our findings reveal that impurity magnetization exhibits an integer/half-integer spin dependence, which aligns with analytical predictions, and a flux-sector transition from bound-flux to zero-flux occurs at low coupling strengths, independent of the impurity spin. Notably, for spin-3/2 impurities, we observe a reentrant bound-flux sector, which remains stable under magnetic fields. By considering fermionic representations of our spin Hamiltonian, we provide phenomenological explanations for the transitions. Our results suggest a novel way of binding a flux in KSLs, beyond the proposals of vacancies or Kondo impurities.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00729-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00729-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Z2 flux binding to higher-spin impurities in the Kitaev spin liquid
Stabilizing Z2 fluxes in Kitaev spin liquids (KSLs) is crucial for both characterizing candidate materials and identifying Ising anyons. In this study, we investigate the effects of spin-S magnetic impurities embedded in the spin-1/2 KSL. Utilizing exact diagonalization and density matrix renormalization group methods, we examine the impurity magnetization and ground-state flux sector with varying impurity coupling and spin size. Our findings reveal that impurity magnetization exhibits an integer/half-integer spin dependence, which aligns with analytical predictions, and a flux-sector transition from bound-flux to zero-flux occurs at low coupling strengths, independent of the impurity spin. Notably, for spin-3/2 impurities, we observe a reentrant bound-flux sector, which remains stable under magnetic fields. By considering fermionic representations of our spin Hamiltonian, we provide phenomenological explanations for the transitions. Our results suggest a novel way of binding a flux in KSLs, beyond the proposals of vacancies or Kondo impurities.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.