{"title":"宽带OFDM通信中的超对角可重构智能曲面:基于电路的建模与优化","authors":"Hongyu Li;Matteo Nerini;Shanpu Shen;Bruno Clerckx","doi":"10.1109/TWC.2025.3532616","DOIUrl":null,"url":null,"abstract":"This work investigates the modeling and optimization of beyond diagonal reconfigurable intelligent surface (BD-RIS), which generalizes conventional RIS with diagonal phase shift matrices and provides additional flexibility for manipulating wireless channels, in wideband communication systems. Specifically, we start from the signal modeling of the BD-RIS-aided orthogonal frequency division multiplexing (OFDM) system, which bridges the time-domain and frequency-domain channels, and explicitly shows the frequency dependence of the BD-RIS response. We next characterize the frequency dependence of the BD-RIS response based on circuit models. Benefiting from the admittance parameter analysis, we model individually each tunable admittance component of BD-RIS and derive an approximated linear expression with respect to the frequency of the transmit signals. With the proposed signal model for the BD-RIS-aided OFDM system and the frequency-dependent BD-RIS model, we propose algorithms to optimize the BD-RIS and the power allocation at the transmitter to maximize the average rate for a BD-RIS-aided OFDM system. Finally, simulation results show that BD-RIS outperforms conventional RIS in the OFDM system. More importantly, the impact of wideband modeling of BD-RIS on the system performance becomes more significant as the circuit complexity of BD-RIS architectures increases.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"24 4","pages":"3623-3636"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Diagonal Reconfigurable Intelligent Surfaces in Wideband OFDM Communications: Circuit-Based Modeling and Optimization\",\"authors\":\"Hongyu Li;Matteo Nerini;Shanpu Shen;Bruno Clerckx\",\"doi\":\"10.1109/TWC.2025.3532616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the modeling and optimization of beyond diagonal reconfigurable intelligent surface (BD-RIS), which generalizes conventional RIS with diagonal phase shift matrices and provides additional flexibility for manipulating wireless channels, in wideband communication systems. Specifically, we start from the signal modeling of the BD-RIS-aided orthogonal frequency division multiplexing (OFDM) system, which bridges the time-domain and frequency-domain channels, and explicitly shows the frequency dependence of the BD-RIS response. We next characterize the frequency dependence of the BD-RIS response based on circuit models. Benefiting from the admittance parameter analysis, we model individually each tunable admittance component of BD-RIS and derive an approximated linear expression with respect to the frequency of the transmit signals. With the proposed signal model for the BD-RIS-aided OFDM system and the frequency-dependent BD-RIS model, we propose algorithms to optimize the BD-RIS and the power allocation at the transmitter to maximize the average rate for a BD-RIS-aided OFDM system. Finally, simulation results show that BD-RIS outperforms conventional RIS in the OFDM system. More importantly, the impact of wideband modeling of BD-RIS on the system performance becomes more significant as the circuit complexity of BD-RIS architectures increases.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"24 4\",\"pages\":\"3623-3636\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10857964/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857964/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Beyond Diagonal Reconfigurable Intelligent Surfaces in Wideband OFDM Communications: Circuit-Based Modeling and Optimization
This work investigates the modeling and optimization of beyond diagonal reconfigurable intelligent surface (BD-RIS), which generalizes conventional RIS with diagonal phase shift matrices and provides additional flexibility for manipulating wireless channels, in wideband communication systems. Specifically, we start from the signal modeling of the BD-RIS-aided orthogonal frequency division multiplexing (OFDM) system, which bridges the time-domain and frequency-domain channels, and explicitly shows the frequency dependence of the BD-RIS response. We next characterize the frequency dependence of the BD-RIS response based on circuit models. Benefiting from the admittance parameter analysis, we model individually each tunable admittance component of BD-RIS and derive an approximated linear expression with respect to the frequency of the transmit signals. With the proposed signal model for the BD-RIS-aided OFDM system and the frequency-dependent BD-RIS model, we propose algorithms to optimize the BD-RIS and the power allocation at the transmitter to maximize the average rate for a BD-RIS-aided OFDM system. Finally, simulation results show that BD-RIS outperforms conventional RIS in the OFDM system. More importantly, the impact of wideband modeling of BD-RIS on the system performance becomes more significant as the circuit complexity of BD-RIS architectures increases.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.