生态围护结构固碳潜力估算:比较研究

IF 6.2 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Yuming Zhu , Fei Zhang , Junjun Ni , Shilin Jia
{"title":"生态围护结构固碳潜力估算:比较研究","authors":"Yuming Zhu ,&nbsp;Fei Zhang ,&nbsp;Junjun Ni ,&nbsp;Shilin Jia","doi":"10.1016/j.geotexmem.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>In the pursuit of sustainable development, the environmental impacts of geotechnical engineering are often neglected. The utilization of geosynthetic-reinforced soil (GRS) and ecological slope protection technology presents promising and eco-friendly alternatives, paving the way for a cleaner future. In this study, the temporal and spatial distribution of the carbon coefficient (CC) and embodied energy coefficient (EEC) are characterized through data analysis. Subsequently, the impact of spatial factors on the total embodied carbon (TEC) is considered. Finally, the carbon sequestration effect of vegetation through photosynthesis is quantified to examine the long-term environmental impact of the selected design options. The findings suggest that embodied carbon (EC) is preferable as an indicator for environmental impact assessment. The GRS technology can effectively mitigate approximately one-third of the environmental impacts compared to conventional methods. Furthermore, when combined with vegetation, GRS technology can achieve net-zero emissions approximately 30 years after the construction of the ecological retaining structure. Although many factors are not considered in this study, the results may inform initial decisions to realize more sustainable infrastructure.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 3","pages":"Pages 697-712"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the carbon sequestration potential of ecological retaining structures: A comparative study\",\"authors\":\"Yuming Zhu ,&nbsp;Fei Zhang ,&nbsp;Junjun Ni ,&nbsp;Shilin Jia\",\"doi\":\"10.1016/j.geotexmem.2025.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the pursuit of sustainable development, the environmental impacts of geotechnical engineering are often neglected. The utilization of geosynthetic-reinforced soil (GRS) and ecological slope protection technology presents promising and eco-friendly alternatives, paving the way for a cleaner future. In this study, the temporal and spatial distribution of the carbon coefficient (CC) and embodied energy coefficient (EEC) are characterized through data analysis. Subsequently, the impact of spatial factors on the total embodied carbon (TEC) is considered. Finally, the carbon sequestration effect of vegetation through photosynthesis is quantified to examine the long-term environmental impact of the selected design options. The findings suggest that embodied carbon (EC) is preferable as an indicator for environmental impact assessment. The GRS technology can effectively mitigate approximately one-third of the environmental impacts compared to conventional methods. Furthermore, when combined with vegetation, GRS technology can achieve net-zero emissions approximately 30 years after the construction of the ecological retaining structure. Although many factors are not considered in this study, the results may inform initial decisions to realize more sustainable infrastructure.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 3\",\"pages\":\"Pages 697-712\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114425000135\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000135","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在追求可持续发展的过程中,岩土工程的环境影响往往被忽视。利用土工合成加筋土(GRS)和生态护坡技术提供了有前途和环保的替代方案,为更清洁的未来铺平了道路。本研究通过数据分析,对碳系数(CC)和蕴含能系数(EEC)的时空分布特征进行了表征。在此基础上,分析了空间因子对总隐含碳(TEC)的影响。最后,对植被通过光合作用的固碳效应进行量化,以检验所选设计方案的长期环境影响。研究结果表明,隐含碳(EC)更适合作为环境影响评价的指标。与传统方法相比,GRS技术可以有效减轻大约三分之一的环境影响。此外,当与植被相结合时,GRS技术可以在生态围护结构建设后约30年内实现净零排放。虽然本研究没有考虑到许多因素,但结果可能为实现更可持续的基础设施的初步决策提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimation of the carbon sequestration potential of ecological retaining structures: A comparative study

Estimation of the carbon sequestration potential of ecological retaining structures: A comparative study
In the pursuit of sustainable development, the environmental impacts of geotechnical engineering are often neglected. The utilization of geosynthetic-reinforced soil (GRS) and ecological slope protection technology presents promising and eco-friendly alternatives, paving the way for a cleaner future. In this study, the temporal and spatial distribution of the carbon coefficient (CC) and embodied energy coefficient (EEC) are characterized through data analysis. Subsequently, the impact of spatial factors on the total embodied carbon (TEC) is considered. Finally, the carbon sequestration effect of vegetation through photosynthesis is quantified to examine the long-term environmental impact of the selected design options. The findings suggest that embodied carbon (EC) is preferable as an indicator for environmental impact assessment. The GRS technology can effectively mitigate approximately one-third of the environmental impacts compared to conventional methods. Furthermore, when combined with vegetation, GRS technology can achieve net-zero emissions approximately 30 years after the construction of the ecological retaining structure. Although many factors are not considered in this study, the results may inform initial decisions to realize more sustainable infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信