多绕组电力变压器快速前端瞬变建模

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Farzad Nasirpour;Tianming Luo;Mohamad Ghaffarian Niasar;Marjan Popov
{"title":"多绕组电力变压器快速前端瞬变建模","authors":"Farzad Nasirpour;Tianming Luo;Mohamad Ghaffarian Niasar;Marjan Popov","doi":"10.1109/TPWRD.2025.3535419","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive model for power transformers, by considering eddy current losses in both the core and conductors. This is achieved through a meticulous analytical approach that ensures high fidelity in representing the transformer's electromagnetic properties. The consideration of magnetic flux effects on inductance and resistance values significantly enhances the model's accuracy and validity. Traditional analytical methods often resort to simplified approaches due to the complexity of these calculations. The paper addresses these limitations by evaluating the eddy current losses in the core and conductors, and by providing a detailed understanding of each component's impact on transformer behavior. Furthermore, by considering the core and conductor effects on the magnetic field distribution, the model handles a wide range of frequencies, making it suitable for conducting comprehensive transient analysis. To validate the model, comparisons with the finite element method and empirical measurements are conducted. Additionally, a reduced-order transformer model is developed using admittance matrix reduction. This approach focuses on the nodes of interest, effectively eliminating not-observed nodes and reducing computational complexity without compromising accuracy. In this way, voltages at specific points of interest are computed efficiently, maintaining the accuracy of the original model.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 2","pages":"1054-1066"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Winding Power Transformer Modeling for Fast-Front Transients\",\"authors\":\"Farzad Nasirpour;Tianming Luo;Mohamad Ghaffarian Niasar;Marjan Popov\",\"doi\":\"10.1109/TPWRD.2025.3535419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comprehensive model for power transformers, by considering eddy current losses in both the core and conductors. This is achieved through a meticulous analytical approach that ensures high fidelity in representing the transformer's electromagnetic properties. The consideration of magnetic flux effects on inductance and resistance values significantly enhances the model's accuracy and validity. Traditional analytical methods often resort to simplified approaches due to the complexity of these calculations. The paper addresses these limitations by evaluating the eddy current losses in the core and conductors, and by providing a detailed understanding of each component's impact on transformer behavior. Furthermore, by considering the core and conductor effects on the magnetic field distribution, the model handles a wide range of frequencies, making it suitable for conducting comprehensive transient analysis. To validate the model, comparisons with the finite element method and empirical measurements are conducted. Additionally, a reduced-order transformer model is developed using admittance matrix reduction. This approach focuses on the nodes of interest, effectively eliminating not-observed nodes and reducing computational complexity without compromising accuracy. In this way, voltages at specific points of interest are computed efficiently, maintaining the accuracy of the original model.\",\"PeriodicalId\":13498,\"journal\":{\"name\":\"IEEE Transactions on Power Delivery\",\"volume\":\"40 2\",\"pages\":\"1054-1066\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Delivery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10856426/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856426/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了考虑铁芯和导体涡流损耗的电力变压器综合模型。这是通过细致的分析方法来实现的,该方法确保了变压器电磁特性的高保真度。考虑了磁通对电感和电阻值的影响,大大提高了模型的准确性和有效性。由于计算的复杂性,传统的分析方法往往采用简化的方法。本文通过评估铁芯和导体中的涡流损耗,并详细了解每个组件对变压器行为的影响,解决了这些限制。此外,由于考虑了磁芯和导体对磁场分布的影响,该模型处理的频率范围很广,适合进行全面的瞬态分析。为了验证模型的有效性,与有限元方法和经验测量进行了比较。此外,利用导纳矩阵约简,建立了降阶变压器模型。这种方法专注于感兴趣的节点,有效地消除了未观察到的节点,在不影响准确性的情况下降低了计算复杂度。通过这种方式,可以有效地计算特定感兴趣点的电压,保持原始模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Winding Power Transformer Modeling for Fast-Front Transients
This paper presents a comprehensive model for power transformers, by considering eddy current losses in both the core and conductors. This is achieved through a meticulous analytical approach that ensures high fidelity in representing the transformer's electromagnetic properties. The consideration of magnetic flux effects on inductance and resistance values significantly enhances the model's accuracy and validity. Traditional analytical methods often resort to simplified approaches due to the complexity of these calculations. The paper addresses these limitations by evaluating the eddy current losses in the core and conductors, and by providing a detailed understanding of each component's impact on transformer behavior. Furthermore, by considering the core and conductor effects on the magnetic field distribution, the model handles a wide range of frequencies, making it suitable for conducting comprehensive transient analysis. To validate the model, comparisons with the finite element method and empirical measurements are conducted. Additionally, a reduced-order transformer model is developed using admittance matrix reduction. This approach focuses on the nodes of interest, effectively eliminating not-observed nodes and reducing computational complexity without compromising accuracy. In this way, voltages at specific points of interest are computed efficiently, maintaining the accuracy of the original model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信